Skip to main content
Log in

Direct Laser Deposition-Additive Manufacturing of Ti–15Mo Alloy: Effect of Build Orientation Induced Surface Topography on Corrosion and Bioactivity

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the direct laser deposition-additive manufacturing (DLD-AM) process is employed to fabricate Ti–15Mo biomedical alloy along two build directions. The aim is to analyse the effect of induced surface topography on corrosion and in-vitro bioactivity, motivated towards ultimate reduction in post-fabrication surface modifications. The effect of surface roughness on corrosion resistance is analysed in-vitro in simulated body fluid (SBF) by electrochemical study. Owing to higher surface roughness in the vertical build samples (Ra = 52.70 ± 11.40 μm) than the horizontal build samples (Ra = 27.10 ± 4.17 μm), upto 75% higher corrosion resistance is found for horizontally built samples. The double passive barrier layer formed in horizontal build higher surface finish samples results in lower corrosion. Further, wettability test confirms that both the build orientations exhibit a hydrophilic surface nature, leading to improved cell attachment. SEM–EDS analysis establishes the in-vitro apatite formation on immersion in SBF, for both build orientation samples. This study leads to understand the role of build orientation induced surface topography for production of minimal post-surface treatment Ti–15Mo bio-implants by the DLD-AM process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. Bandyopadhyay, A. Shivaram, S. Tarafder, H. Sahasrabudhe, D. Banerjee, S. Bose, In vivo response of laser processed porous titanium implants for load-bearing implants. Ann. Biomed. Eng. 45, 249–260 (2017)

    Article  Google Scholar 

  2. A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater. 6, 1640–1648 (2010)

    Article  CAS  Google Scholar 

  3. V.K. Balla, M. Das, A. Mohammad, A.M. Al-Ahmari, Additive manufacturing of γ-TiAl: processing, microstructure and properties. Adv. Eng. Mater. 18, 1208–1215 (2016)

    Article  CAS  Google Scholar 

  4. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, M.H.I. Ibrahim, Study of corrosion in biocompatible metals for implants: a review. J. Alloys Compd. 701, 698–715 (2017)

    Article  CAS  Google Scholar 

  5. V.K. Balla, S. Banerjee, S. Bose, A. Bandyopadhyay, Direct laser processing of a tantalum coating on titanium for bone replacement structures. Acta Biomater. 6, 2329–2334 (2010)

    Article  CAS  Google Scholar 

  6. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog. Mater. Sci. 54, 397–425 (2009)

    Article  CAS  Google Scholar 

  7. Y.L. Zhou, D.M. Luo, Corrosion behavior of Ti–Mo alloys cold rolled and heat treated. J. Alloys Compd. 509, 6267–6272 (2011)

    Article  CAS  Google Scholar 

  8. S. Kumar, T.S.N.S. Narayanan, Corrosion behaviour of Ti–15Mo alloy fordental implant applications. J. Dent. 36, 500–507 (2008)

    Article  CAS  Google Scholar 

  9. N.T.C. Oliveira, A.C. Gustaldi, Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 51, 399–405 (2009)

    Article  Google Scholar 

  10. G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, R.M. Souto, Investigation of the electrochemical behaviour of Ti–Mo alloys in simulated physiological solutions. Electrochim. Acta 113, 470–480 (2013)

    Article  CAS  Google Scholar 

  11. N. Somsanith, T.S.N.S. Narayanan, Y.-K. Kim, I.I.-S. Park, T.-S. Bae, M.-H. Lee, Surface medication of Ti–15Mo alloy by thermal oxidation: evaluation of surface characteristics and corrosion resistance in Ringer’s solution. Appl. Surf. Sci. 356, 1117–1126 (2015)

    Article  CAS  Google Scholar 

  12. K. Das, V.K. Balla, A. Bandyopadhyay, S. Bose, Surface modification of laser-processed porous titanium for load bearing implants. Scripta Mater. 59, 822–825 (2008)

    Article  CAS  Google Scholar 

  13. A. Sarker, N. Tran, A. Rifai, J. Elambasseril, M. Brandt, R. Williams, M. Leary, K. Fox, Angle defines attachment: switching the biological response to titanium interfaces by modifying the inclination angle during selective laser melting. Mater. Des. 154, 326–339 (2018)

    Article  CAS  Google Scholar 

  14. A.T. Sidambe, Effects of build orientation on 3D-printed Co–Cr–Mo: surface topography and L929 fibroblast cellular response. Int. J. Adv. Manuf. Technol. 99, 867–880 (2018)

    Article  Google Scholar 

  15. T. Bhardwaj, M. Shukla, C.P. Paul, K.S. Bindra, Direct energy deposition: laser additive manufacturing of titanium-molybdenum alloy—parametric studies, microstructure and mechanical properties. J. Alloys Compd. 787, 1238–1248 (2019)

    Article  CAS  Google Scholar 

  16. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  17. M. Niemczewska-Wójcik, Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests. Measurement 107, 89–98 (2017)

    Article  Google Scholar 

  18. A. Townsend, N. Senin, L. Blunt, R.K. Leach, J.S. Taylor, Surface texture metrology for metal additive manufacturing: a review. Precis. Eng. 46, 34–47 (2016)

    Article  Google Scholar 

  19. N.T.C. Oliveira, A.C. Gustaldi, Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corros. Sci. 50, 938–945 (2008)

    Article  CAS  Google Scholar 

  20. A.M. Kumar, P. Sudhagar, S. Ramakrishna, Y.S. Kang, H. Kim, Z.M. Gasem, N. Rajendran, Evaluation of chemically modified Ti–5Mo–3Fe alloy surface: electrochemical aspects and in vitro bioactivity on MG63 cells. Appl. Surf. Sci. 307, 52–61 (2014)

    Article  CAS  Google Scholar 

  21. A.M. Kumar, S. Nagarajan, N. Rajendran, T. Nishimura, EIS evaluation of protective performanceand surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test. J. Solid State Electrochem. 16, 2085–2093 (2012)

    Article  Google Scholar 

  22. L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho, N. Bocchi, Preparation and characterization of biomimetically and electrochemically deposited hydroxyapatite coatings on micro-arc oxidized Ti–13Nb–13Zr. J. Mater. Sci. Mater. Med. 22, 1663–1670 (2011)

    Article  CAS  Google Scholar 

  23. M. Sowa, W. Simka, Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC plasma electrolytic oxidation. Materials 11, 545–561 (2018)

    Article  Google Scholar 

  24. J.L. Xu, S.C. Tao, L.Z. Bao, J.M. Luo, Y.F. Zheng, Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti–Mo alloys. J. Mater. Sci. 97, 156–165 (2019)

    CAS  Google Scholar 

  25. Z. Deng, B. Yin, W. Li, J. Liu, J. Yang, T. Zheng, D. Zhang, H. Yu, X. Liu, J. Ma, Surface characteristics of and in-vitro behavior of osteoblast-like cells on titanium with nano topography prepared by high-energy shot peening. Int. J. Nanomed. 9, 5565–5573 (2014)

    Article  CAS  Google Scholar 

  26. H.-C. Hsu, H.-K. Tsou, S.-K. Hsu, S.-C. Wu, C.-H. Lai, W.-F. Ho, Effect of water aging on the apatite formation of a low-modulus Ti–7.5Mo alloy treated with aqueous NaOH. J. Mater. Sci. 46, 1369–1379 (2011)

    Article  CAS  Google Scholar 

  27. A. Shaoki, J.-Y. Xu, H. Sun, X.-S. Chen, J. Ouyang, X.-M. Zhuang, F.-L. Deng, Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting. Biofabrication 8, 4 (2016)

    Article  Google Scholar 

  28. W. Wang, G. Caetano, W.S. Ambler, J.J. Blaker, M.A. Frade, P. Mandal, C. Diver, P. Bártolo, Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials 9, 92 (2016)

    Article  Google Scholar 

  29. N.P. Lang, G.E. Salvi, G. Huynh-Ba, S. Ivanovski, N. Donos, D.D. Bosshardt, Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin. Oral Implants Res. 22, 349–356 (2011)

    Article  Google Scholar 

  30. Q. Ding, X. Zhang, Y. Huang, Y. Yan, X. Pang, In vitro cytocompatibility and corrosion resistance of zinc-dopedhydroxyapatite coatings on a titanium substrate. J. Mater. Sci. 50, 189–202 (2015)

    Article  CAS  Google Scholar 

  31. Y. Sasikumar, N. Rajendran, Influence of surface modification on the apatite formation and corrosion behavior of Ti and Ti–15Mo alloy for biomedical applications. Mater. Chem. Phys. 138, 114–123 (2013)

    Article  CAS  Google Scholar 

  32. M. Todea, A. Vulpoi, C. Popa, P. Berce, S. Simon, Effect of different surface treatments on bioactivity of porous titanium implants. J. Mater. Sci. Technol. 35, 418–426 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are largely due to Prof. Kallol Mondol, Department of Materials Science and Engineering, IIT Kanpur, India for providing the access to the corrosion facility. The support of staff members at LAML, Laser Technology Division, RRCAT Indore in performing the experiments and ACMS, IIT Kanpur, India in conducting XPS and SEM/EDS is gratefully acknowledged. The lead author acknowledges the support of Ministry of Human Resource Development, Government of India for financial assistance as research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, T., Shukla, M., Prasad, N.K. et al. Direct Laser Deposition-Additive Manufacturing of Ti–15Mo Alloy: Effect of Build Orientation Induced Surface Topography on Corrosion and Bioactivity. Met. Mater. Int. 26, 1015–1029 (2020). https://doi.org/10.1007/s12540-019-00464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00464-3

Keywords

Navigation