Skip to main content
Log in

Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of a High-Strength Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, to research the dynamic recrystallization (DRX) behavior of a high-strength steel (34CrNiMo6), hot compression tests were carried on Gleeble-1500D thermo-mechanical simulator within the different temperatures and strain rates. After hot compression tests, the microstructures of specimens were observed by optical microscope. Based on Kocks and Mecking mathematics model (KM), the DRX kinetic model was established by the flow stress curves during hot deformation. Meanwhile, a grain size model was established by measuring microstructure. Furthermore, combined with the material kinetic model and grain size model, a rigid–plastic finite element simulation was built to analyze the microstructural behavior of 34CrNiMo6 steel during the uniaxial hot compression. The results indicate that the simulation results are in good agreement with the experimental data. The DRX model had an accurately predictive capability for the hot compression process, which could provide a theoretical guidance and process optimization for metal forming processes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Q.G. Meng, C.G. Bai, D.S. Xu, J. Mater. Sci. Technol. 34, 679–688 (2018)

    Article  Google Scholar 

  2. T. Zhong, K.P. Rao, Y.V.R.K. Prasad, M. Gupta, Mater. Sci. Eng. A 559, 773–781 (2013)

    Article  CAS  Google Scholar 

  3. Y. Xu, J.S. Liu, Y.X. Jiao, Met. Mater. Int. 419, 99 (2019)

    Google Scholar 

  4. M.S. Chen, Y.C. Lin, X.S. Ma, Mater. Sci. Eng. A 556, 260–266 (2012)

    Article  CAS  Google Scholar 

  5. H.R. Abedi, A. Zarei Hanzaki, Z. Liu, R. Xin, N. Haghdadi, P.D. Hodgson, Mater. Des. 114, 55–64 (2017)

    Article  CAS  Google Scholar 

  6. J.S. Zhang, Y.F. Xia, G.Z. Quan, X. Wang, J. Zhou, J. Alloys Compd. 743, 464–478 (2018)

    Article  CAS  Google Scholar 

  7. Y. Xu, C. Chen, X.X. Zhang, H.H. Dai, J.B. Jia, Z.H. Bai, Mater. Charact. 145, 39–52 (2018)

    Article  CAS  Google Scholar 

  8. Y. Cai, C.Y. Sun, W. Li, Acta Metall. Sin. 52, 1123–1132 (2016)

    CAS  Google Scholar 

  9. J.W. Lee, K.T. Son, T.K. Jung, Y.O. Yoon, S.K. Kim, H.J. Choi, S.K. Hyun, Mater. Sci. Eng. A 673, 648–659 (2016)

    Article  CAS  Google Scholar 

  10. G.L. Ji, Q. Li, L. Li, Mater. Sci. Eng. A 586, 197–203 (2013)

    Article  CAS  Google Scholar 

  11. Z.P. Wan, S. Yu, L.X. Hu, H. Yu, Mater. Des. 122, 11–20 (2017)

    Article  CAS  Google Scholar 

  12. E. Ghasemi, A. Zarei-Hanzaki, E. Farabi, K. Tesař, A. Jäger, M. Rezaee, J. Alloys Compd. 695, 1706–1718 (2017)

    Article  CAS  Google Scholar 

  13. M.S. Chen, Y.C. Lin, K.K. Li, Procedia Eng. 207, 2125–2130 (2017)

    Article  CAS  Google Scholar 

  14. A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, X. Wang, Mater. Sci. Eng. A 615, 51–60 (2014)

    Article  CAS  Google Scholar 

  15. B. Gong, X.W. Duan, J.S. Liu, J.J. Liu, Vacuum 155, 345–357 (2018)

    Article  CAS  Google Scholar 

  16. Z. Zeng, L. Chen, F. Zhu, J. Mater. Sci. Technol. 27, 913–919 (2011)

    Article  CAS  Google Scholar 

  17. G.R. Ebrahimi, H. Keshmiri, A.R. Maldad, A. Momeni, J. Mater. Sci. Technol. 28, 467–473 (2012)

    Article  CAS  Google Scholar 

  18. E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127–136 (1996)

    Article  CAS  Google Scholar 

  19. H. Mirzadeh, A. Najafizadeh, Mater. Des. 31, 1174–1179 (2010)

    Article  CAS  Google Scholar 

  20. S.W. Du, S.M. Chen, J.J. Song, Y.T. Li, Metall. Mater. Trans. A 48, 1–11 (2017)

    CAS  Google Scholar 

  21. L. Zhang, W.Y. Yang, Z.Q. Sun, J. Univ. Sci. Technol. Beijing 14, 130–135 (2007)

    Article  CAS  Google Scholar 

  22. H. Yu, Y.L. Kang, K.L. Wang, J. Fu, Z.B. Wang, D.L. Liu, Mater. Sci. Eng. A 363, 86–92 (2003)

    Article  Google Scholar 

  23. L.X. Kong, P.D. Hodgson, B. Wang, J. Mater. Process Technol. 89–90, 44–50 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially sponsored by the Fund for Shanxi Key Subjects Construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X.W., Liu, J.J., Gong, B. et al. Experimental Study and Numerical Simulation of Dynamic Recrystallization Behavior of a High-Strength Steel. Met. Mater. Int. 27, 1044–1059 (2021). https://doi.org/10.1007/s12540-019-00433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00433-w

Keywords

Navigation