Skip to main content
Log in

Compressive Mechanical Properties and Shock-Induced Reaction Behavior of a Ti–29Nb–13Ta–4.6Zr Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The compressive mechanical properties of a Ti–29Nb–13Ta–4.6Zr alloy were investigated at room temperature under various strain rates. The parameters of a modified Johnson–Cook constitutive equation were determined to describe the strain softening behavior under dynamic conditions. The testing results under compression show yield strength evidently increases with the increase of the strain rate. Moreover, it was found that the strain-rate effect of the yield strength upon dynamic deformation is more significant than that upon quasi-static deformation. In order to characterize the impact-initiated reaction behavior of Ti–29Nb–13Ta–4.6Zr alloy, the quasi-sealed test chamber was used to measure the pressure caused by energy released of fragments. It was obviously shown that the exothermic chemical reaction was more intense with the increase of impact velocity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.R. Amaya-Vazquez, J.M. Sánchez-Amaya, Z. Boukha, F.J. Botana, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros. Sci. 6, 36–48 (2012)

    Article  Google Scholar 

  2. C.X. Cui, B.M. Hu, L.C. Zhao, S.J. Liu, Titanium alloy production technology, market prospects and industry development. Mater. Des. 32, 1684–1689 (2011)

    Article  CAS  Google Scholar 

  3. R.R. Boyer, An overview on the use of titanium in aerospace industry. J. Mater. Sci. Eng. A 213, 103–114 (1996)

    Article  Google Scholar 

  4. M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications. Adv. Eng. Mater. 5, 419–427 (2003)

    Article  CAS  Google Scholar 

  5. H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C 26, 1269–1277 (2006)

    Article  CAS  Google Scholar 

  6. I.V. Gorynin, Titanium alloys for marine application. Mater. Sci. Eng. A 263, 112–116 (1999)

    Article  Google Scholar 

  7. Y.J. Liu, S.J. Li, L.C. Zhang, Y.L. Hao, T.B. Sercombe, Early plastic deformation behaviour and energy absorption in porous β-type biomedical titanium produced by selective laser melting. Scr. Mater. 153, 99–103 (2018)

    Article  CAS  Google Scholar 

  8. S. Li, S. Zhao, W. Hou, C.Y. Teng, Y.L. Hao, Y. Li, R. Yang, R.D.K. Misra, Functionally graded Ti–6Al–4V meshes with high strength and energy absorption. Adv. Eng. Mater. 18, 34–38 (2018)

    Article  Google Scholar 

  9. K. Narita, M. Niinomi, M. Nakai, J. Hieda, K. Oribe, Development of thermo-mechanical processing for fabricating highly durable β-type Ti–Nb–Ta–Zr rod for use in spinal fixation devices. J. Mech. Behav. Biomed. Mater. 9, 207–216 (2012)

    Article  CAS  Google Scholar 

  10. T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater. Sci. Eng. C 25, 248–254 (2005)

    Article  Google Scholar 

  11. X. Song, M. Niinomi, H. Tsutsumi, M. Nakai, L. Wang, Effects of TiB on mechanical properties of β-type titanium alloy for use in biomedical applications. Mater. Sci. Eng. A 528, 5600–5609 (2011)

    Article  CAS  Google Scholar 

  12. N. Sakagucgi, M. Niinomi, T. Akahori, Tensile deformation behavior of Ti–Nb–Ta–Zr biomedical alloys. Mater. Trans. 45, 113–1119 (2004)

    Google Scholar 

  13. N. Sakaguchi, M. Niinomi, T. Akahori, J. Takeda, H. Toda, Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater. Sci. Eng. C 25, 363–369 (2005)

    Article  Google Scholar 

  14. S.J. Li, R. Yang, S. Li, Y.L. Yao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti–Nb–Ta–Zr and Ti–6Al–4V alloys for biomedical applications. Wear 257, 869–876 (2004)

    Article  CAS  Google Scholar 

  15. E. Farghadany, A. Zarei-Hanzaki, H.R. Abedi, D. Dietrich, M.R. Yadegari, T. Lampke, The coupled temperature-strain rate sensitivity of Ti–29Nb–13Ta–4.6Zr alloy. Mater. Sci. Eng. A 610, 258–262 (2014)

    Article  CAS  Google Scholar 

  16. X.F. Zhang, A.S. Shi, L. Qiao, J. Zhang, Y.G. Zhang, Z.W. Guan, Experimental study on impact-initiated characters of multifunctional energetic structural materials. J. Appl. Phys. 113, 083508 (2013)

    Article  Google Scholar 

  17. S. Hanagud, Z. Wu, R. Zaharieva, X. Lu, Multiscale models for multicomponent structural energetic materials, in 17th Structures, Structural Dynamics and Materials Conference, Palm Spring, USA (2009)

  18. N.N. Thadhani, Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures. J. Appl. Phys. 76, 2129–2138 (1994)

    Article  CAS  Google Scholar 

  19. X.F. Zhang, X.N. Zhao, L. Qiao, Theory analysis on shock-induced chemical reaction of reactive metal. Explos. Shock Waves 30, 145–151 (2010)

    CAS  Google Scholar 

  20. R.G. Ames, Reaction efficiencies for impact-initiated energetic materials, in 32nd International Pyrotechnics Seminar, Karlsruhe, Germany (2005)

  21. C.T. Wang, Y. He, C. Ji, Y. He, W. Han, X.C. Pan, Investigation on shock-induced reaction characteristics of a Zr-based metallic glass. Intermetallics 93, 383–388 (2018)

    Article  CAS  Google Scholar 

  22. T.W. Zhang, Z.M. Jiao, Z.H. Wang, J.W. Qiao, Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy. Scr. Mater. 136, 15–19 (2017)

    Article  CAS  Google Scholar 

  23. L. Wang, J.W. Qiao, S.G. Ma, Z.M. Jiao, T.W. Zhang, G. Chen, D. Zhao, Y. Zhang, Z.H. Wang, Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading. Mater. Sci. Eng. A 727, 208–213 (2018)

    Article  CAS  Google Scholar 

  24. M.A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994)

    Book  Google Scholar 

  25. G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in Proceedings of the 7th International Symposium on Ballistics, The Hague, The Netherlands (1983)

  26. G.R. Johnson, W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)

    Article  Google Scholar 

  27. M. Calamaz, D. Coupard, F. Girot, A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 48, 275–288 (2008)

    Article  Google Scholar 

  28. M. Sima, T. Özel, Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 50, 943–960 (2010)

    Article  Google Scholar 

  29. J.J. Mason, A.J. Rosakis, G. Ravichandran, On the strain and strain rate dependence of the fraction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar. Mech. Mater. 17, 135–145 (1994)

    Article  Google Scholar 

  30. A.M. Lennon, K.T. Ramesh, The influence of crystal structure on the dynamic behavior of materials at high temperatures. Int. J. Plast. 20, 269–290 (2004)

    Article  CAS  Google Scholar 

  31. A.S. Khan, Y.S. Suh, R. Kazmi, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int. J. Plast. 20, 2233–2248 (2018)

    Article  Google Scholar 

  32. H. Bros, M.L. Michel, R. Castanet, Enthalpy and heat capacity of titanium based alloys. J. Therm. Anal. 41, 7–24 (1994)

    Article  CAS  Google Scholar 

  33. J. Sun, Y.B. Guo, Material flow stress and failure in multiscale machining titanium alloy Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 41, 651–659 (2009)

    Article  Google Scholar 

  34. T. Nagase, M. Todai, T. Hori, T. Nakano, Microstructure of equiatomic and non-equiatomic Ti–Nb–Ta–Zr–Mo high-entropy alloys for metallic biomaterials. J Alloys Compd. 753, 412–421 (2018)

    Article  CAS  Google Scholar 

  35. V.D. Mishra, B.C. Rao, H. Murthy, Enhancement of mechanical properties by cold-rolling of Al6061. Mater. Today Proc. 5, 8263–8270 (2018)

    Article  CAS  Google Scholar 

  36. I. Markovic, S. Ivanov, U. Stamenkovic et al., Annealing behavior of Cu–7at.%Pd alloy deformed by cold rolling. J. Alloys Compd. 768, 944–952 (2018)

    Article  CAS  Google Scholar 

  37. C.N. Athreya, G. Kapoor, J. Gubicza, V. Subramanya Sarma, Influence of mode of plastic straining on the microstructure of Ni and Ti deformed through rolling and torsion. Mater. Charact. 132, 205–214 (2017)

    Article  CAS  Google Scholar 

  38. Y.B. Wang, W.D. Zeng, X. Sun, J.W. Xu, The microstructure characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures. Mater. Sci. Eng. A 677, 325–331 (2016)

    Article  CAS  Google Scholar 

  39. B. Feng, C.A. Bronkhorst, F.L. Addessio, B.M. Morrow, W.H. Li, T. Lookman, E.K. Cerreta, Coupled nonlinear elasticity, plastic slip, twinning, and phase transformation in single crystal titanium for plate impact loading. J. Mech. Phys. Solids 127, 358–385 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of Jiangshu China (BK20160832) and the National Natural Science Foundation of China (Nos. 51601095, 11504173, 11502118, 11702145, 51375244, 51301093).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Ran Liu; Data curation, Zhiping Guo and Yue Ma; Formal analysis, Zhiping Guo, Yuan He and Xuebing Hu; Investigation, Zhiping Guo, Ran Liu, Yuan He and Xuebing Hu; Methodology, Ran Liu and Chuanting Wang; Project administration, Yong He; Resources, Yong He; Supervision, Chuanting Wang and Yuan He; Validation, Chuanting Wang and Xuebing Hu; Visualization, Yong He and Yue Ma; Writing—original draft, Zhiping Guo and Chuanting Wang; Writing—review and editing, Yong He, Yue Ma and Xuebing Hu.

Corresponding authors

Correspondence to Chuan Ting Wang or Yong He.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Liu, R., Wang, C.T. et al. Compressive Mechanical Properties and Shock-Induced Reaction Behavior of a Ti–29Nb–13Ta–4.6Zr Alloy. Met. Mater. Int. 26, 1498–1505 (2020). https://doi.org/10.1007/s12540-019-00414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00414-z

Keywords

Navigation