Skip to main content
Log in

Grain Size Effect on Mechanical Properties Under Biaxial Stretching in Pure Tantalum

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper reports the mechanical properties and formability under biaxial stretching in pure tantalum as a function of average grain size. The grain size of pure tantalum was adjusted from submicron to tens of micron using the high-pressure torsion process and subsequent annealing. The stretch formability was evaluated using a miniaturized Erichsen tester. Under uniaxial tension, the mechanical properties of pure tantalum followed the typical strength-ductility trade-off behavior according to the average grain size. Nevertheless, the stretch formability became rather significantly inferior in the coarse-grain tantalum, which was primarily attributed to the poor resistance to strain localization and limited work hardening capacity. This deterioration was supposed to be due to the intensified strain localization with increasing the average grain size, based on the in-grain deformation heterogeneity within individual grains and the surface roughening after the Erichsen test. Consequently, this study suggests that the excellent stretch formability and work hardening capacity under biaxial loading can be achieved at a certain range of the average grain size (8.25–19.3 μm in this work).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.W. Buckman Jr., JOM 52, 40 (2000)

    CAS  Google Scholar 

  2. W. Köck, P. Paschen, JOM 41, 33 (1989)

    Google Scholar 

  3. A. Nishino, J. Power Sources 60, 137 (1996)

    CAS  Google Scholar 

  4. J. Virkki, T. Seppälä, L. Frisk, P. Heino, Microelectron. Reliab. 50, 217 (2010)

    CAS  Google Scholar 

  5. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials 22, 1253 (2001)

    CAS  Google Scholar 

  6. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater Sci. 54, 397 (2009)

    CAS  Google Scholar 

  7. I.H.G. Livingstone, K. Verolme, C.J. Hayhurst, Int. J. Impact Eng 26, 453 (2001)

    Google Scholar 

  8. J.I. Yoon, J. Jung, S.-H. Joo, T.J. Song, K.-G. Chin, M.H. Seo, S.-J. Kim, S. Lee, H.S. Kim, Mater. Lett. 180, 322 (2016)

    CAS  Google Scholar 

  9. J.I. Yoon, H.H. Lee, J. Jung, H.S. Kim, Mater. Sci. Eng. A 735, 295 (2018)

    CAS  Google Scholar 

  10. R. Narayanasamy, C.S. Narayanan, Mater. Des. 29, 1467 (2008)

    CAS  Google Scholar 

  11. X. Huang, Y. Chino, M. Mabuchi, M. Matsuda, Mater. Sci. Eng. A 611, 152 (2014)

    CAS  Google Scholar 

  12. J.W. Park, S.J. Park, K.S. Shin, Met. Mater. Int. 23, 444 (2017)

    CAS  Google Scholar 

  13. R. Narayanasamy, R. Ponalagusamy, S. Raghuraman, Mater. Des. 29, 884 (2008)

    CAS  Google Scholar 

  14. J.W. Signorelli, M.A. Bertinetti, P.A. Turner, Int. J. Plast 25, 1 (2009)

    CAS  Google Scholar 

  15. M. Shakeri, A. Sadough, B.M. Dariani, Proc. Inst. Mech Eng. Part B J. Eng. Manuf. 214, 821 (2000)

    Google Scholar 

  16. A.K. Ghosh, Acta Metall. 25, 1413 (1977)

    Google Scholar 

  17. M. Aghaie, R. Mahmudi, JOM 50, 50 (1998)

    Google Scholar 

  18. D.H. Kang, D.-W. Kim, S. Kim, G.T. Bae, K.H. Kim, N.J. Kim, Scr. Mater. 61, 768 (2009)

    CAS  Google Scholar 

  19. Z. Fan, H. Mingzhi, S. Deke, Mater. Sci. Eng. A 122, 211 (1989)

    Google Scholar 

  20. R. Yoda, K. Shibata, T. Morimitsu, D. Terada, N. Tsuji, Scr. Mater. 65, 175 (2011)

    CAS  Google Scholar 

  21. H. Liu, Y. Shen, J. Ma, P. Zheng, L. Zhang, J. Mater. Eng. Perform. 25, 3599 (2016)

    CAS  Google Scholar 

  22. Y.Z. Tian, L.J. Zhao, N. Park, R. Liu, P. Zhang, Z.J. Zhang, A. Shibata, Z.F. Zhang, N. Tsuji, Acta Mater. 110, 61 (2016)

    CAS  Google Scholar 

  23. A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci. 53, 893 (2008)

    CAS  Google Scholar 

  24. R. Pippan, S. Scheriau, A. Hohenwarter, M. Hafok, Mater. Sci. Forum 584, 16 (2008)

    Google Scholar 

  25. N. Maury, N.X. Zhang, Y. Huang, A.P. Zhilyaev, T.G. Langdon, Mater. Sci. Eng. A 638, 174 (2015)

    CAS  Google Scholar 

  26. S.N. Mathaudhu, K.T. Hartwig, Mater. Sci. Eng. A 426, 128 (2006)

    Google Scholar 

  27. ISO 20482, Metallic materials—sheet and strip—Erichsen cupping test. http://www.iso.org (2013)

  28. J.I. Yoon, J. Jung, H.H. Lee, H.S. Kim, JOM 70, 912 (2018)

    CAS  Google Scholar 

  29. J.W. Bae, J. Moon, M.J. Jang, D. Yim, D. Kim, S. Lee, H.S. Kim, Mater. Sci. Eng. A 703, 324 (2017)

    CAS  Google Scholar 

  30. H.Y. Um, E.Y. Yoon, D.J. Lee, C.S. Lee, L.J. Park, S. Lee, H.S. Kim, Scr. Mater. 71, 41 (2014)

    CAS  Google Scholar 

  31. H.Y. Um, H.J. Jeong, H.Y. Kim, L.J. Park, S. Lee, H.S. Kim, Scr. Mater. 82, 41 (2014)

    CAS  Google Scholar 

  32. M. El, P.H.R. Pereira, Y. Huang, H. Park, H. Choe, T.G. Langdon, J. Gubicza, Mater. Lett. 214, 240 (2018)

    Google Scholar 

  33. D. Colas, E. Finot, S. Flouriot, S. Forest, M. Mazière, T. Paris, Mater. Sci. Eng. A 615, 283 (2014)

    CAS  Google Scholar 

  34. O. Saray, G. Purcek, I. Karaman, H.J. Maier, Metall. Mater. Trans. A 44, 4194 (2013)

    CAS  Google Scholar 

  35. D.M. Sekban, O. Saray, S.M. Aktarer, G. Purcek, Z.Y. Ma, Mater. Sci. Eng. A 642, 57 (2015)

    CAS  Google Scholar 

  36. O. Saray, G. Purcek, I. Karaman, H.J. Maier, Mater. Sci. Eng. A 619, 119 (2014)

    CAS  Google Scholar 

  37. S. Ghosh, A.K. Singh, S. Mula, Mater. Des. 100, 47 (2016)

    CAS  Google Scholar 

  38. S. Patra, S.M. Hasan, N. Narasaiah, D. Chakrabarti, Mater. Sci. Eng. A 538, 145 (2012)

    CAS  Google Scholar 

  39. W. Boas, M.E. Hargreaves, Proc. R. Soc. A 193, 89 (1948)

    Google Scholar 

  40. J. Jiang, T.B. Britton, A.J. Wilkinson, Acta Mater. 61, 7227 (2013)

    CAS  Google Scholar 

  41. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, Z. Zhao, Acta Mater. 51, 1539 (2003)

    CAS  Google Scholar 

  42. D.V. Wilson, W.T. Roberts, P.M.B. Rodrigues, Metall. Trans. A 12, 1603 (1981)

    CAS  Google Scholar 

  43. Z. Zhao, R. Radovitzky, A. Cuitiño, Acta Mater. 52, 5791 (2004)

    CAS  Google Scholar 

  44. M.R. Stoudt, R.E. Ricker, Metall. Mater. Trans. A 33, 2883 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.H., Hwang, K.J., Jung, J. et al. Grain Size Effect on Mechanical Properties Under Biaxial Stretching in Pure Tantalum. Met. Mater. Int. 25, 1448–1456 (2019). https://doi.org/10.1007/s12540-019-00294-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00294-3

Keywords

Navigation