Skip to main content
Log in

Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Magnesium and its alloys have attracted a great deal of attention in the field of biomedical applications, especially biodegradable stents. However, they have not been extensively used because of some inherent limitations such as poor mechanical properties and high corrosion rate. During the last decade, the selected fabrication methods for producing stent precursors is of great importance and can significantly affect the final stent’s properties. In this paper, the progress of fabrication methods and properties of Mg microtubes for using as biodegradable stents are reviewed. The paper will firstly classify the fabrication methods, and then investigate produced microtubes’ properties from the perspective of mechanical, microstructural and biocorrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F. Alfonso, J. García, M.-J. Pérez-Vizcayno, L. Hernando, R. Hernandez, J. Escaned, P. Jiménez-Quevedo, C. Bañuelos, C. Macaya, J. Am. Coll. Cardiol. 54, 1036–1038 (2009)

    Google Scholar 

  2. P.N. Malani, JAMA 308, 1813–1814 (2012)

    Google Scholar 

  3. M. Niinomi, J. Artif. Organs 11, 105 (2008)

    Google Scholar 

  4. B. Bhargava, I. De Scheerder, Q.B. Ping, H. Yanming, R. Chan, H. Soo Kim, M. Kollum, Y. Cottin, M.B. Leon, Catheter Cardiovasc. Interv. 51, 364–368 (2000)

    Google Scholar 

  5. G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Biomaterials 28, 1689–1710 (2007)

    Google Scholar 

  6. N. Kipshidze, G. Dangas, M. Tsapenko, J. Moses, M.B. Leon, M. Kutryk, P. Serruys, J. Am. Coll. Cardiol. 44, 733–739 (2004)

    Google Scholar 

  7. G.D. Dangas, B.E. Claessen, A. Caixeta, E.A. Sanidas, G.S. Mintz, R. Mehran, J. Am. Coll. Cardiol. 56, 1897–1907 (2010)

    Google Scholar 

  8. A. Kastrati, R. Byrne, JACC Cardiovasc. Interv. 4, 165–167 (2011)

    Google Scholar 

  9. S. Cassese, R.A. Byrne, T. Tada, S. Pinieck, M. Joner, T. Ibrahim, L.A. King, M. Fusaro, K.-L. Laugwitz, A. Kastrati, Heart 100, 153–159 (2014)

    Google Scholar 

  10. D. Giacoppo, G. Gargiulo, P. Aruta, P. Capranzano, C. Tamburino, D. Capodanno, BMJ 351, h5392 (2015)

    Google Scholar 

  11. M. Valgimigli, H. Bueno, R.A. Byrne, J.-P. Collet, F. Costa, A. Jeppsson, P. Jüni, A. Kastrati, P. Kolh, L. Mauri, Eur. J. Cardiothorac. Surg. 53, 34–78 (2017)

    Google Scholar 

  12. J. Torrado, L. Buckley, A. Durán, P. Trujillo, S. Toldo, J.V. Raleigh, A. Abbate, G. Biondi-Zoccai, L.A. Guzmán, J. Am. Coll. Cardiol. 71, 1676–1695 (2018)

    Google Scholar 

  13. U. Baber, R. Mehran, G. Giustino, D.J. Cohen, T.D. Henry, S. Sartori, C. Ariti, C. Litherland, G. Dangas, C.M. Gibson, J. Am. Coll. Cardiol. 67, 2224–2234 (2016)

    Google Scholar 

  14. T.R. Welch, in Congenital Heart Disease Intervention, An Issue of Interventional Cardiology Clinics, vol. 8 (Ebook, 2018), p. 81

  15. L. Mao, J. Chen, X. Zhang, M. Kwak, Y. Wu, R. Fan, L. Zhang, J. Pei, G. Yuan, C. Song, Sci. Rep. 7, 46343 (2017)

    Google Scholar 

  16. R. Waksman, R. Pakala, P.K. Kuchulakanti, R. Baffour, D. Hellinga, R. Seabron, F.O. Tio, E. Wittchow, S. Hartwig, C. Harder, Catheter Cardiovasc. Interv. 68, 607–617 (2006)

    Google Scholar 

  17. M. Bornapour, H. Mahjoubi, H. Vali, D. Shum-Tim, M. Cerruti, M. Pekguleryuz, Mater. Sci. Eng., C 67, 72–84 (2016)

    Google Scholar 

  18. H.S. Brar, M.O. Platt, M. Sarntinoranont, P.I. Martin, M.V. Manuel, JOM 61, 31–34 (2009)

    Google Scholar 

  19. P.K. Bowen, W.H. Sillekens, JOM 68, 1175–1176 (2016)

    Google Scholar 

  20. H.S. Brar, B.G. Keselowsky, M. Sarntinoranont, M.V. Manuel, JOM 63, 100–104 (2011)

    Google Scholar 

  21. R. Werkhoven, W. Sillekens, J. Van Lieshout, in Processing Aspects of Magnesium Alloy Stent Tube, Magnesium Technology 2011 (Springer, 2011), pp. 419–424

  22. N.C. Andrews, N. Engl. J. Med. 341, 1986–1995 (1999)

    Google Scholar 

  23. M. Peuster, P. Wohlsein, M. Brügmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, Heart 86, 563–569 (2001)

    Google Scholar 

  24. M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, C. von Schnakenburg, Biomaterials 27, 4955–4962 (2006)

    Google Scholar 

  25. R. Waksman, R. Pakala, R. Baffour, R. Seabron, D. Hellinga, F.O. Tio, J. Interv. Cardiol. 21, 15–20 (2008)

    Google Scholar 

  26. P.K. Bowen, J. Drelich, R.E. Buxbaum, R.M. Rajachar, J. Goldman, Emerg. Mater. Res. 1, 237–255 (2012)

    Google Scholar 

  27. D. Pierson, J. Edick, A. Tauscher, E. Pokorney, P. Bowen, J. Gelbaugh, J. Stinson, H. Getty, C.H. Lee, J. Drelich, J. Biomed. Mater. Res. Part B Appl. Biomater. 100, 58–67 (2012)

    Google Scholar 

  28. P.K. Bowen, J.A. Gelbaugh, P.J. Mercier, J. Goldman, J. Drelich, J. Biomed. Mater. Res. B Appl. Biomater. 100, 2101–2113 (2012)

    Google Scholar 

  29. M. Peuster, P. Beerbaum, F.-W. Bach, H. Hauser, Cardiol. Young 16, 107–116 (2006)

    Google Scholar 

  30. H. Tapiero, K.D. Tew, Biomed. Pharmacother. 57, 399–411 (2003)

    Google Scholar 

  31. P. Trumbo, A.A. Yates, S. Schlicker, M. Poos, J. Am. Diet. Assoc. 101, 294–301 (2001)

    Google Scholar 

  32. G.J. Fosmire, Am. J. Clin. Nutr. 51, 225–227 (1990)

    Google Scholar 

  33. K.M. Hambidge, N.F. Krebs, J. Nutr. 137, 1101–1105 (2007)

    Google Scholar 

  34. A.S. Prasad, Mol. Med. 14, 353 (2008)

    Google Scholar 

  35. J. Kubasek, D. Vojtěch, Metal 5, 23–25 (2012)

    Google Scholar 

  36. P.K. Bowen, J. Drelich, J. Goldman, Adv. Mater. 25, 2577–2582 (2013)

    Google Scholar 

  37. H. Li, X. Xie, Y. Zheng, Y. Cong, F. Zhou, K. Qiu, X. Wang, S. Chen, L. Huang, L. Tian, Sci. Rep. 5, 10719 (2015)

    Google Scholar 

  38. P.K. Bowen, J.M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, J.W. Drelich, J. Biomed. Mater. Res. B Appl. Biomater. 106, 245–258 (2018)

    Google Scholar 

  39. H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, X. Wang, Mater. Des. 83, 95–102 (2015)

    Google Scholar 

  40. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728–1734 (2006)

    Google Scholar 

  41. N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, A. Lewenstam, Clin. Chim. Acta 294, 1–26 (2000)

    Google Scholar 

  42. R.F. Schmidt, F. Lang, M. Heckmann, Physiologie des menschen: mit pathophysiologie (Springer, New York, 2011)

    Google Scholar 

  43. X.-N. Gu, Y.-F. Zheng, Front. Mater. Sci. Chin. 4, 111–115 (2010)

    Google Scholar 

  44. E. Huse, Chicago Med. J. Exam, 172 (1878)

  45. E. Payr, Arch Klin Chir 62, 67–93 (1900)

    Google Scholar 

  46. F. Witte, Acta Biomater. 6, 1680–1692 (2010)

    Google Scholar 

  47. B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A. Haverich, Heart 89, 651–656 (2003)

    Google Scholar 

  48. C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kasese, J. Interv. Cardiol. 17, 391–395 (2004)

    Google Scholar 

  49. P. Zartner, R. Cesnjevar, H. Singer, M. Weyand, Catheter Cardiovasc. Interv. 66, 590–594 (2005)

    Google Scholar 

  50. P. Peeters, M. Bosiers, J. Verbist, K. Deloose, B. Heublein, J. Endovasc. Ther. 12, 1–5 (2005)

    Google Scholar 

  51. D. Schranz, P. Zartner, I. Michel-Behnke, H. Akintürk, Catheter Cardiovasc. Interv. 67, 671–673 (2006)

    Google Scholar 

  52. R. Waksman, R. Pakala, T. Okabe, D. Hellinga, R. Chan, M.O. Tio, E. Wittchow, S. Hartwig, K.H. Waldmann, C. Harder, J. Interv. Cardiol. 20, 367–372 (2007)

    Google Scholar 

  53. C.J. McMahon, P. Oslizlok, K.P. Walsh, Catheter Cardiovasc. Interv. 69, 735–738 (2007)

    Google Scholar 

  54. R. Erbel, C. Di Mario, J. Bartunek, J. Bonnier, B. de Bruyne, F.R. Eberli, P. Erne, M. Haude, B. Heublein, M. Horrigan, The Lancet 369, 1869–1875 (2007)

    Google Scholar 

  55. A.W. Martinez, E.L. Chaikof, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 256–268 (2011)

    Google Scholar 

  56. D. Stoeckel, C. Bonsignore, S. Duda, Minim. Invasive Ther. Allied Technol. 11, 137–147 (2002)

    Google Scholar 

  57. S. Jamali, G. Faraji, K. Abrinia, Mater. Sci. Eng. A 666, 176–183 (2016)

    Google Scholar 

  58. S. Jamali, G. Faraji, K. Abrinia, Int. J. Adv. Manuf. Technol. 88, 291–301 (2017)

    Google Scholar 

  59. G. Fang, W. Ai, M. Leeflang, in Proceedings of the 10th International Conference on Technology of Plasticity (ICTP2011), Aachen, Germany, 2011, pp. 1087–1092

  60. Q. Ge, M. Vedani, G. Vimercati, Mater. Manuf. Process. 27, 140–146 (2012)

    Google Scholar 

  61. M. Vedani, Q. Ge, W. Wu, L. Petrini, Int.J. Mater. Form. 7, 31–38 (2014)

    Google Scholar 

  62. K. Yoshida, A. Koiwa, J. Solid Mech. Mater. Eng. 5, 1071–1078 (2011)

    Google Scholar 

  63. P. Kumar, G. Agnihotri, Int. J. Eng. Res. Appl. 3, 988–994 (2013)

    Google Scholar 

  64. B. Gerold, H. Müller, Konzept für biologisch abbaubare Implantate aus Magnesium, na, 2006

  65. K. Hanada, K. Matsuzaki, X. Huang, Y. Chino, Mater. Sci. Eng. C 33, 4746–4750 (2013)

    Google Scholar 

  66. G. Fang, W.-J. Ai, S. Leeflang, J. Duszczyk, J. Zhou, Mater. Sci. Eng. C 33, 3481–3488 (2013)

    Google Scholar 

  67. L. Wang, G. Fang, L. Qian, S. Leeflang, J. Duszczyk, J. Zhou, Prog. Nat. Sci. Mater. Int. 24, 500–506 (2014)

    Google Scholar 

  68. F. Liu, C. Chen, J. Niu, J. Pei, H. Zhang, H. Huang, G. Yuan, Mater. Sci. Eng. C 48, 400–407 (2015)

    Google Scholar 

  69. T. Furushima, K. Manabe, J. Mater. Process. Technol. 191, 59–63 (2007)

    Google Scholar 

  70. K. Manabe, T. Shimizu, T. Furushima, in Proceedings of the 2005 Japanese Spring Conference for the Technology of Plasticity, 2005, pp. 39–40

  71. P. Kustra, A. Milenin, B. Płonka, T. Furushima, J. Mater. Eng. Perform. 25, 2528–2535 (2016)

    Google Scholar 

  72. A. Milenin, P. Kustra, D. Byrska-Wójcik, T. Furushima, Procedia Eng. 207, 2352–2357 (2017)

    Google Scholar 

  73. G. Faraji, H.S. Kim, Mater. Sci. Technol. 33, 905–923 (2017)

    Google Scholar 

  74. M. Kawasaki, R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 47, 7719–7725 (2012)

    Google Scholar 

  75. M. Eftekhari, A. Fata, G. Faraji, M.M. Mashhadi, J. Alloys Compd. 742, 442–453 (2018)

    Google Scholar 

  76. A. Fata, G. Faraji, M. Mashhadi, H. Abdolvand, Trans. Indian Inst. Met. 70, 1369–1376 (2017)

    Google Scholar 

  77. A. Fata, G. Faraji, M. Mashhadi, V. Tavakkoli, Arch. Metall. Mater. 62, 159–166 (2017)

    Google Scholar 

  78. A. Fata, G. Faraji, M.M. Mashhadi, V. Tavakkoli, Mater. Sci. Eng. A 674, 9–17 (2016)

    Google Scholar 

  79. G. Argade, S. Panigrahi, R. Mishra, Corros. Sci. 58, 145–151 (2012)

    Google Scholar 

  80. Y. Zheng, X. Gu, F. Witte, Mater. Sci. Eng. R Rep. 77, 1–34 (2014)

    Google Scholar 

  81. G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Lett. 65, 3009–3012 (2011)

    Google Scholar 

  82. V. Segal, V. Reznikov, A. Dobryshevshiy, V. Kopylov, Rus. Metall. (Metally) 1, 99–105 (1981)

    Google Scholar 

  83. M. Richert, Q. Liu, N. Hansen, Mater. Sci. Eng. A 260, 275–283 (1999)

    Google Scholar 

  84. A.P. Zhilyaev, T.G. Langdon, Prog. Mater Sci. 53, 893–979 (2008)

    Google Scholar 

  85. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103–189 (2000)

    Google Scholar 

  86. G. Faraji, P. Yavari, S. Aghdamifar, M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134–138 (2014)

    Google Scholar 

  87. M. Ensafi, G. Faraji, H. Abdolvand, Mater. Lett. 197, 12–16 (2017)

    Google Scholar 

  88. H. Abdolvand, G. Faraji, J.S. Karami, M. Baniasadi, Bull. Mater. Sci. 40, 1471–1479 (2017)

    Google Scholar 

  89. H. Abdolvand, H. Sohrabi, G. Faraji, F. Yusof, Mater. Lett. 143, 167–171 (2015)

    Google Scholar 

  90. A.S. Mohammadi, M.M. Mashhadi, G. Faraji, Modares Mech. Eng. 15, 126–130 (2015)

    Google Scholar 

  91. W. Guo, Q. Wang, B. Ye, M. Liu, T. Peng, X. Liu, H. Zhou, Mater. Sci. Eng. A 540, 115–122 (2012)

    Google Scholar 

  92. S. Amani, G. Faraji, K. Abrinia, Journal of Manufacturing Processes 28, 197–208 (2017)

    Google Scholar 

  93. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, H. Kim, Mater. Des. 43, 31–39 (2013)

    Google Scholar 

  94. L.-P. Wang, C. Tian, W.-Y. Jiang, Y.-C. Feng, G.-J. Cao, Z. Yan, Trans. Nonferrous Met. Soc. China 23, 3200–3205 (2013)

    Google Scholar 

  95. A. Salandari-Rabori, A. Zarei-Hanzaki, S. Fatemi, M. Ghambari, M. Moghaddam, J. Alloys Compd. 693, 406–413 (2017)

    Google Scholar 

  96. S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, H. Ghanbari, J. Alloys Compd. 723, 467–476 (2017)

    Google Scholar 

  97. T. Furushima, T. Shimizu, K. Manabe, in Materials Science Forum (Trans Tech Publication, 2010), pp. 735–738

  98. Q. Ge, D. Dellasega, A.G. Demir, M. Vedani, Acta Biomater. 9, 8604–8610 (2013)

    Google Scholar 

  99. E. Mostaed, M. Vedani, M. Hashempour, M. Bestetti, Biomatter 4, e28283 (2014)

    Google Scholar 

  100. G. Faraji, M.M. Mashhadi, H.S. Kim, Mater. Sci. Eng. A 528, 4312–4317 (2011)

    Google Scholar 

  101. A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 49, 1199–1207 (2001)

    Google Scholar 

  102. S. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Mater. Sci. Eng. A 527, 52–60 (2009)

    Google Scholar 

  103. W.-J. Ai, G. Fang, J. Zhou, M. Leeflang, J. Duszczyk, Mater. Sci. Eng. A 556, 373–381 (2012)

    Google Scholar 

  104. D. Liu, C. Guo, L. Chai, V.R. Sherman, X. Qin, Y. Ding, M.A. Meyers, Mater. Sci. Eng. B 195, 50–58 (2015)

    Google Scholar 

  105. X. Liu, J. Sun, Y. Yang, Z. Pu, Y. Zheng, Mater. Lett. 161, 53–56 (2015)

    Google Scholar 

  106. C.-J. Li, H.-F. Sun, S. Cheng, H.-M. Tan, T.-H. He, W.-B. Fang, Mater. Res. Express 6, 026539 (2018)

    Google Scholar 

  107. J. Wang, Y. Zhou, Z. Yang, S. Zhu, L. Wang, S. Guan, Mater. Sci. Eng. C 90, 504–513 (2018)

    Google Scholar 

  108. S. Amani, G. Faraji, H.K. Mehrabadi, M. Baghani, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233, 1196–1205 (2019)

    Google Scholar 

  109. A. Meyer-Lindenberg, H. Windhugen, F. Witte, Google Patents, 2004

  110. G. Song, Corros. Sci. 49, 1696–1701 (2007)

    Google Scholar 

  111. F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C. Wirth, H. Windhagen, Biomaterials 26, 3557–3563 (2005)

    Google Scholar 

  112. V. Neubert, I. Stulíková, B. Smola, B. Mordike, M. Vlach, A. Bakkar, J. Pelcová, Mater. Sci. Eng. A 462, 329–333 (2007)

    Google Scholar 

  113. X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30, 484–498 (2009)

    Google Scholar 

  114. Y. Nakamura, Y. Tsumura, Y. Tonogai, T. Shibata, Y. Ito, Toxicol. Sci. 37, 106–116 (1997)

    Google Scholar 

  115. M. Li, Y. Cheng, Y. Zheng, X. Zhang, T. Xi, S. Wei, Appl. Surf. Sci. 258, 3074–3081 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Faraji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, S., Faraji, G. Processing and Properties of Biodegradable Magnesium Microtubes for Using as Vascular Stents: A Brief Review. Met. Mater. Int. 25, 1341–1359 (2019). https://doi.org/10.1007/s12540-019-00285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00285-4

Keywords

Navigation