Skip to main content
Log in

Microstructure and Compression Strength of W/HfC Composites Synthesized by Plasma Activated Sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, W/HfC composite materials were synthesized using plasma activated sintering. The influence of the sintering temperature and HfC weight fraction on the relative density, microstructure and compression strength were investigated. The results demonstrated that the sintering temperature and the HfC content significantly affected the microstructure of W/HfC composites. Moreover, the grain size of the W/HC composites decreased and the mechanical properties were improved remarkably due to the addition of HfC. The majority of HfC particles reacted with oxygen impurities to generate HfO2, which purified the grain boundaries and refined the grain size of the W matrix. The optimum content of HfC is 2 wt%, at which a high compressive strength of 1.98 GPa and a high strain of 34.7% were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Lee, M.A. Umer, Y. Shin, S. Jeon, S. Hong, Mater. Sci. Eng. A 552, 481 (2012)

    Article  Google Scholar 

  2. P. Norajitra, L.V. Boccaccini, E. Diegele, V. Filatov, A. Gervash, J. Nucl. Mater. 329–333, 1594 (2004)

    Article  Google Scholar 

  3. H.W. Deng, Z.M. Xie, Y.K. Wang, R. Liu, T. Zhang, T. Hao, Mater. Sci. Eng. A 715, 117 (2018)

    Article  Google Scholar 

  4. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, Q.F. Fang, J. Nucl. Mater. 469, 209 (2016)

    Article  Google Scholar 

  5. P. Gumbsch, J. Riedle, A. Hartmaier, H.F. Fischmeister, Science 282, 1293 (1998)

    Article  Google Scholar 

  6. F. Liu, H. Zhou, Y. Xu, X.C. Li, M. Zhao, T. Zhang, Fusion Eng. Des. 113, 216 (2016)

    Article  Google Scholar 

  7. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, X.P. Wang, X. Liu, Sci Rep. 5, 16014 (2015)

    Article  Google Scholar 

  8. R. Liu, Y. Zhou, T. Hao, T. Zhang, X.P. Wang, C.S. Liu, Q.F. Fang, J. Nucl. Mater. 424, 171 (2012)

    Article  Google Scholar 

  9. Z.M. Xie, R. Liu, S. Miao, T. Zhang, X.P. Wang, Q.F. Fang, G.N. Luo, J. Nucl. Mater. 464, 193 (2015)

    Article  Google Scholar 

  10. Q. Xu, X.Y. Ding, L.M. Luo, M. Miyamoto, M. Tokitani, J. Zhang, Y.C. Wu, J. Nucl. Mater. 496, 227 (2017)

    Article  Google Scholar 

  11. Y.K. Wang, S. Miao, Z.M. Xie, R. Liu, T. Zhang, Q.F. Fang, L.H. Cai, J. Nucl. Mater. 492, 260 (2017)

    Article  Google Scholar 

  12. Z. Oksiuta, K. Perkowski, M. Osuchowski, M. Zalewska, M. Andrzejczuk, Fusion Eng. Des. 126, 51 (2018)

    Article  Google Scholar 

  13. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, Q.F. Fang, G.N. Luo, J. Nucl. Mater. 469, 209 (2016)

    Article  Google Scholar 

  14. S. Miao, Z.M. Xie, L.F. Zeng, T. Zhang, Q.F. Fang, X.P. Wang, X. Liu, Fusion Eng. Des. 125, 490 (2017)

    Article  Google Scholar 

  15. D. Lee, M.A. Umer, H.J. Ryu, S.H. Hong, Int. J. Refract. Met. Hard Mater. 44, 49 (2014)

    Article  Google Scholar 

  16. S. Lang, Q. Yan, N. Sun, X. Zhang, C. Ge, Fusion Eng. Des. 121, 366 (2017)

    Article  Google Scholar 

  17. Y. Kim, K.H. Lee, E.P. Kim, D.I. Cheong. S.H. Hong, Int. J. Refract. Met. Hard Mat. 27, 842 (2009)

  18. Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloys Compd. 695, 2969 (2017)

    Article  Google Scholar 

  19. K. Shi, B. Huang, B. He, Y. Xiao, L. Chen, Y. Lian, J. Tang, Fusion Eng. Des. 122, 223 (2017)

    Article  Google Scholar 

  20. C.B. Bargeron, R.C. Benson, A.N. Jette, J. Am. Ceram. Soc. 76(4), 1040 (2010)

    Article  Google Scholar 

  21. S. Shimada, Solid State Ion. 149(3), 319 (2002)

    Article  Google Scholar 

  22. S. Miao, Z.M. Xie, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Y.Y. Lian, Mater. Sci. Eng. A 671, 87 (2016)

    Article  Google Scholar 

  23. Z.M. Xie, R. Liu, Q.F. Fang, Plasma Sci. Technol. 17, 1066 (2015)

    Article  Google Scholar 

  24. Y.K. Wang, S. Miao, Z.M. Xie, R. Liu, T. Zhang, Q.F. Fang, C.S. Liu, J. Nucl. Mater. 492, 260 (2017)

    Article  Google Scholar 

  25. N. Hansen, Scr. Mater. 51, 801 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 51521001 and 51572208), the “111” Project (Grant No. B13035), the National Key R&D Program of China (2018YFB0905600), the Nature Science Foundation of the Hubei Province (No. 2016CFA006) and the Joint Fund (No. 6141A02022223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, S., Zhu, J. et al. Microstructure and Compression Strength of W/HfC Composites Synthesized by Plasma Activated Sintering. Met. Mater. Int. 25, 416–424 (2019). https://doi.org/10.1007/s12540-018-0190-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0190-8

Keywords

Navigation