Skip to main content
Log in

Thermoelectric Properties of Cu-doped Bi2−xSbxTe3 Prepared by Encapsulated Melting and Hot Pressing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

P-type Bi2−xSbxTe3:Cum (x = 1.5–1.7 and m = 0.002–0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964), p. 43

    Book  Google Scholar 

  2. H. Scherrer, S. Scherrer, in Handbook of Thermoelectrics, chap. 19, ed. by D.M. Rowe (CRC Press, London, 1995)

    Google Scholar 

  3. H.J. Goldsmid, J. Appl. Phys. 32, 2198 (1961)

    Article  Google Scholar 

  4. L.V. Prokof’eva, D.A. Pshenai-Severin, P.P. Konstantinov, A.A. Shabaldin, Semiconductors 43, 1155 (2009)

    Article  Google Scholar 

  5. D. Vasilevskiy, A. Sami, J.M. Simard, R. Masut, J. Appl. Phys. 92, 2610 (2002)

    Article  Google Scholar 

  6. S.Y. Wang, W.J. Xie, H. Li, X.F. Tang, Intermetallics 19, 1024 (2011)

    Article  Google Scholar 

  7. G.R. Miller, C.Y. Li, J. Phys. Chem. Sol. 26, 173 (1965)

    Article  Google Scholar 

  8. J. Horak, K. Cermak, L. Koudelka, J. Phys. Chem. Sol. 47, 805 (1986)

    Article  Google Scholar 

  9. Z. Stary, J. Horak, M. Stordeur, M. Stolzer, J. Phys. Chem. Sol. 49, 29 (1988)

    Article  Google Scholar 

  10. A. Hashibon, C. Elsasser, Phys. Rev. B 84, 144117 (2011)

    Article  Google Scholar 

  11. S. Chen, K.F. Cai, F.Y. Li, S.Z. Chen, J. Electron. Mater. 43, 1966 (2014)

    Article  Google Scholar 

  12. R.O. Carlson, J. Phys. Chem. Sol. 13, 65 (1960)

    Article  Google Scholar 

  13. T.A. McCarthy, H.J. Goldsmid, J. Phys. D Appl. Phys. 3, 697 (1970)

    Article  Google Scholar 

  14. W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Adv. Energy Mater. 1, 577 (2011)

    Article  Google Scholar 

  15. M.K. Han, K. Ahn, H.J. Kim, J.S. Rhyee, S.J. Kim, J. Mater. Chem. 21, 11365 (2011)

    Article  Google Scholar 

  16. J.L. Cui, L.D. Mao, W. Yang, X.B. Xu, D.Y. Chen, W.J. Xiu, J. Sol. Stat. Chem. 180, 3583 (2007)

    Article  Google Scholar 

  17. H. Li, H. Jing, Y. Han, Y. Xu, G.Q. Lu, L. Xu, J. Alloys Compd. 576, 369 (2013)

    Article  Google Scholar 

  18. Y.S. Lim, M.S. Song, S.I. Lee, T.H. An, C. Park, W.S. Seo, J. Alloys Compd. 687, 320 (2016)

    Article  Google Scholar 

  19. Z. Huang, X. Dai, Y. Yu, C. Zhou, F. Zu, Scr. Mater. 118, 19 (2016)

    Article  Google Scholar 

  20. W.J. Jung, I.H. Kim, J. Korean Phys. Soc. 69, 1328 (2016)

    Article  Google Scholar 

  21. J.H. Son, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, M.H. Kim, H.W. Lee, J. Alloys Compd. 566, 168 (2013)

    Article  Google Scholar 

  22. G.J. Snyder, E.S. Toberer, Nature Mater. 7, 105 (2008)

    Article  Google Scholar 

  23. H. Kohler, Phys. Stat. Sol. B 74, 591 (1976)

    Article  Google Scholar 

  24. H.T. Langhammer, M. Stordeur, H. Sobotta, V. Riede, Phys. Stat. Sol. B 123, K47 (1984)

    Article  Google Scholar 

  25. L. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu, X. Zhao, J. Mater. Chem. 22, 16484 (2012)

    Article  Google Scholar 

  26. H. Cailat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996)

    Article  Google Scholar 

  27. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  28. S.K. Bux, J.P. Fleurial, R.B. Kaner, Chem. Commun. 46, 8311 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Civil-Military Technology Cooperation Program, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, WJ., Kim, IH. Thermoelectric Properties of Cu-doped Bi2−xSbxTe3 Prepared by Encapsulated Melting and Hot Pressing. Met. Mater. Int. 24, 415–421 (2018). https://doi.org/10.1007/s12540-018-0029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0029-3

Keywords

Navigation