Skip to main content
Log in

Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

With increased hydrogen consumption in ammonia production, refining and synthesis, fuel cells and vehicle industries, development of the material components related to hydrogen production is becoming an important factor in industry growth. Porous metals for fabrication of hydrogen are commonly known for their relative excellence in terms of large area, lightness, lower heat capacity, high toughness, and permeability. Fe-Cr-Al alloys not only have high corrosion resistance, heat resistance, and chemical stability but also ductility, excellent mechanical properties. In order to control powder size and sintering temperature effects of Fe-Cr-Al porous metal fabrication, Fe-Cr-Al powder was classified into 25-35 μm, 35-45 μm, 45-75 μm using an auto shaking sieve machine and then classified Fe-Cr-Al powders were pressed into disk shapes using a uniaxial press machine and CIP. The pelletized Fe-Cr-Al specimens were sintered at various temperatures in high vacuum. Properties such as pore size, porosity, and air permeability were evaluated using perm-porosimetry. Microstructure and phase changes were observed with SEM and XRD. Porosity and relative density were proportionated to increasing sintering temperature. With sufficient sintering at increasing temperatures, the pore size is expected to be gradually reduced. Porosity decreased with increasing sintering temperature and gradually increased necking of the powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Vergis, Ph. D. Thesis, p.11, University of Florida, Florida (2007).

    Google Scholar 

  2. N. L. Garland, D. C. Papageorgopoulos, and J. M. Stanford, Energy Proced. 28, 2 (2012).

    Article  Google Scholar 

  3. J. H. Choi, Y. W. Rhee, K. S. Kang, S.-J. Choi, and J.-W. Kim, Trans. Korean Hydrog. New Energy Soc. 18, 481 (2007).

    Google Scholar 

  4. O. S. Joo, Korean Chem. Eng. Res. 49, 688 (2011).

    Article  Google Scholar 

  5. A. P. Simpson and A. E. Lutz, Int. J. Hydrogen Energ. 32, 4811 (2007).

    Article  Google Scholar 

  6. R. Kikuchi, S. Maeda, K. Sasaki, S. Wennerström, and K. Eguchi, Appl. Catal. A 232, 23 (2002).

    Article  Google Scholar 

  7. J. H. Jeong, J. W. Lee, D. J. Seo, Y. Seo, W. L. Yoon, D. K. Lee, et al. Appl. Catal. A 302, 151 (2006).

    Article  Google Scholar 

  8. M. A. Peña, J. P. Gómez, and J. L. G. Fierro, Appl. Catal. A 144, 7 (1996).

    Article  Google Scholar 

  9. K. Ishizaki, S. Komarneni, and M. Nanko, Porous Materials: Process Technology and Applications, pp.1–5, Springer Science & Business Media, Germany (2013).

    Google Scholar 

  10. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, pp.512–520, Wiley New York, USA (2007).

    Google Scholar 

  11. T. Altan, S. I. Oh, and G. Gegel, Metal Forming: Fundamentals and Applications, p. 353, American Society for Metals, Ohio, USA (1983).

    Google Scholar 

  12. E. Mercadelli, A. Gondolini, P. Pinasco, and A. Sanson, Met. Mater. Int. 23, 184 (2017).

    Article  Google Scholar 

  13. E. C. Childs and N. Collis-George, P. Roy. Soc. A-Math. Phy. 201, 392 (1950).

    Article  Google Scholar 

  14. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, J. Zu, et al. Oxid. Met. 53, 273 (2000).

    Article  Google Scholar 

  15. S. H. Jang, Ph. D. Thesis, pp.16–18, Seoul National University, Seoul (2010).

    Google Scholar 

  16. S.-H. Kim, Y.-I. Jung, Y.-W. Rhee, D.-J. Park, J.-H. Park, J.-Y. Park, et al. Korean J. Met. Mater. 54, 364 (2016).

    Article  Google Scholar 

  17. J. Jeon, S. Woo, K. No, Y. Lee, D.-Y. Yang, H. Choi, et al. Korean J. Met. Mater. 54, 322 (2016).

    Article  Google Scholar 

  18. A. Hernández, J. Calvo, P. Prádanos, and F. Tejerina, J. Membrane Sci. 112, 1 (1996).

    Article  Google Scholar 

  19. I. H. Song, J. H. Ha, B. Bae, Y.-J. Park, J.-W. Ko, Y.-K. Baek, et al. J. Korean Powder Metall. Inst. 21, 62 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Kee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koo, BU., Yi, Y., Lee, M. et al. Effects of particle size and forming pressure on pore properties of Fe-Cr-Al porous metal by pressureless sintering. Met. Mater. Int. 23, 336–340 (2017). https://doi.org/10.1007/s12540-017-6689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6689-6

Keywords

Navigation