Skip to main content
Log in

Enhancement of densification and sintering behavior of tungsten material via nano modification and magnetic mixing processed under spark plasma sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, the influence of nano additives (Ni, Fe) and different mixing (turbular and magnetic) on the densification, microstructure and micro-hardness of the tungsten material under spark plasma sintering is analyzed. After turbulent mixing the nanoparticles are distributed widely in the W interparticle gaps but after magnetic mixing the nanoparticles are distributed not only on the gaps of the W particles but also on the broken surfaces. Ni incorporated tungsten materials achieved the maximum density of 98.3% at 1400 °C (turbular mixing) and 97.9% at 1300 °C (magnetic mixing). Fe incorporated tungsten material showed density of 97.7% at 1600 °C and 97.2% at 1400 °C after turbular and magnetic mixing. The influence of nanoparticles in the densification process was explained by Laplace force, boundary slip and Agte-Vacek effect. The microstructural analysis showed that nano-modification reduced the degree of porosity, and provides a compact material at low temperatures. X-ray fluorescence analysis reveals that magnetic mixing shows more uniform distribution of nanoparticles than turbular mixing. The nanoparticles incorporation increased the micro hardness of tungsten material. Hence, it is clear that magnetic mixing and nano modification greatly improved the densification and sintering behavior of the tungsten material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, p. 416, Kluwer Academic, New York, USA (1999).

    Book  Google Scholar 

  2. Z. Zhou, Y. Ma, J. Du, and J. Linke, Mat. Sci. Eng. A-Struct. 505, 131 (2009).

    Article  Google Scholar 

  3. M. Mabuchi, K. Okamoto, N. Saito, T. Asahina, and T. Igarashi, Mat. Sci. Eng. A-Struct. 237, 241 (1997).

    Article  Google Scholar 

  4. S. G. Caldwell, Teledyne Metalworking Products. Powder Metallurgy Tungsten Heavy Alloys, p. 921, ASM Handbook Vol. 7, Powder Metal Technologies and Applications (ASM International), Materials Park, USA (1990).

    Google Scholar 

  5. V. Piotter, B. Zeep, P. Norajitra, R. Ruprecht, A. von der Weth, and J. Hausselt, Fusion Eng. Des. 83, 1517 (2008).

    Article  Google Scholar 

  6. Y. Kim, M.-H. Hong, S. Lee, E.-P. Kim, S. Lee, and J.-W. Noh, Met. Mater. Int. 12, 245 (2006).

    Article  Google Scholar 

  7. D. M. Karpinos, A. A. Kravchenko, Y. L. Pilipovskii, V. G. Tkachenko, and Y. M. Shamatov, Sov. Powder Metall. 9, 287 (1970).

    Google Scholar 

  8. M. A. Monge, M. A. Auger, T. Leguey, Y. Ortega, L. Bolzoni, E. Gordo, et al. J. Nucl. Mater. 386, 613 (2009).

    Article  Google Scholar 

  9. G. Prabhu, A. Chakraborty, B. Sarma, Int. J. Refract. Met. H. 27, 545 (2009).

    Article  Google Scholar 

  10. M. A. Umer, D. Lee, O. A. Waseem, H. J. Ryu, and S. H. Hong, Met. Mater. Int. 22, 493 (2016).

    Article  Google Scholar 

  11. A. N. Zelikman and B. G. Korshunov, Metallurgy of Rare Metals, p. 432, Metallurgy Publisher, Moscow, Russia (1991).

    Google Scholar 

  12. L. Ding, D. P. Xiang, Y. Y. Li, C. Li, and J. B. Li, Int. J. Refract. Met. H. 33, 65 (2012).

    Article  Google Scholar 

  13. R. M. German and Z. A. Munir, Rev. Powder Metall. Phys. Ceram. 2, 9 (1982).

    Google Scholar 

  14. H. W. Hayden and J. H. Brophy, J. Electrochem. Soc. 110, 805 (1963).

    Article  Google Scholar 

  15. A. G. Hamidi, H. Arabi, and S. Rastegari, Int. J. Refract. Met. H. 29, 538 (2011).

    Article  Google Scholar 

  16. A. Patra, R. Saxena, and S. K. Karak, Int. J. Refract. Met. H. 60, 131 (2016).

    Article  Google Scholar 

  17. A. Mondal, A. Upadhyaya, and D. Agrawal, Int. J. Refract. Met. H. 28, 597 (2010).

    Article  Google Scholar 

  18. I. A. Rutkowska, D. Marks, C. Perruchot, M. Jouini, and P. J. Kulesza, Colloid. Surface. A 439, 200 (2013).

    Article  Google Scholar 

  19. S. S. Kalyan Kamal, P. K. Sahoo, J. Vimala, B. Shanker, P. Ghosal, and L. Durai, J. Alloy. Compd. 678, 403 (2016).

    Article  Google Scholar 

  20. A. A. Rempel, Russ. Chem. Rev. 76, 435 (2007).

    Article  Google Scholar 

  21. H. Wang, Z. Z. Fang, K. S. Hwang, H. Zhang, and D. Siddle, Int. J. Refract. Met. H. 28, 312 (2010).

    Article  Google Scholar 

  22. S. V. Matrenin, A. P. Ilyin, A. I. Slosman, and L. O. Tolbanova, Adv. Mater. 81, 87 (2008).

    Google Scholar 

  23. S. V. Matrenin, B. B. Ovechkin, and D. D. Sadilov, Bulletin of Siberian Sci. 1, 149 (2011).

    Google Scholar 

  24. S. V. Matrenin, A. P. Ilyin, A. I. Slosman, and L. O. Tolbanova, Bulletin of the Tomsk Polytechnic University 313, 83 (2008).

    Google Scholar 

  25. V. M. Nguyen, Y. V. Konyukhov, D. I. Ryzhonkov, and S. I. Kotov, Universities’ Proceedings-Powder Metallurgy ?nd Functional Coatings 1, 4 (2016).

    Google Scholar 

  26. D. D. Logvinenko, and O. P. Shelyakov, Intensification of Technological Processes in a Fluidized Bed Apparatus, p. 144, Publishing house “Technique”, Kiev, Ukraine (1976).

    Google Scholar 

  27. C. Ren, Z. Z. Fang, H. Zhang, M. Koopman, Int. J. Refract. Met. H. 61, 273 (2016).

    Article  Google Scholar 

  28. R. Jenkins and R. L. Snyder, Introduction to X-ray Powder Diffractometry, p. 432, J. Wiley & Sons Inc, New York, USA (1996).

    Book  Google Scholar 

  29. A. Patra, Md. Mera, S. Pal, N. Yedla, and S. K. Karak, Int. J. Refract. Met. H. 58, 57 (2016).

    Article  Google Scholar 

  30. G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956).

    Article  Google Scholar 

  31. R. E. Smallman and K. H. Westmacott, Philos. Mag. 2, 669 (1957).

    Article  Google Scholar 

  32. A. Patra, R. Saxena, and S. K. Karak, Int. J. Refract. Met. H. 60, 131 (2016).

    Article  Google Scholar 

  33. H. Wang and Z. Z. Fang, Int. J. Refract. Met. H. 28, 312 (2010).

    Article  Google Scholar 

  34. V. N. Chuvildeev, A. V. Nokhrin, G. V. Baranov, A. V. Moskvicheva, Yu. G. Lopatin, A. V Piskunov, et al. Nizhny Novgorod University Gazette them. NI Lobachevsky. 2, 47 (2010).

    Google Scholar 

  35. P. Jain and R. C. Chaudhary, Advances in Applied Science Research 4, 285 (2013).

    Google Scholar 

  36. C. Agte and J. Vacek, Wolfram und Molybdan, p. 216, Akad-Verlag, Berlin, Germany (1959).

    Google Scholar 

  37. N. P. Lyakishev, Phase Diagrams of Binary Metallic Systems, V. 1-3, p. 2484, Mechanical engineering, Moscow, Russia (1996-2000).

    Google Scholar 

  38. O. Bannyh and M. Dritz, Constitution Diagram of Binary and Multicomponent Iron-Based Systems, p. 440, Metallurgy, Moscow, Russia (1986).

    Google Scholar 

  39. G. A. Libenson, V. Y. Lopatin, and G. V. Komarnicki, Powder Metallurgy Processes. Vol. 2. The Molding and Sintering: A Textbook for High Schools, p. 320, MISiS, Moscow, Russia (2002).

    Google Scholar 

  40. D. I. Ryzhonkov, V. V. Levin, and E. L. Dzidziguri, Nanomaterials: A Tutorial, p. 366, Binom Laboratory Knowledge, Moscow, Russia (2012).

    Google Scholar 

  41. L. S. Vasiliev, I. L. Lomaev, and E. P. Elsukov, Phys. Met. Metallogr. 102, 201 (2006).

    Google Scholar 

  42. L. S. Vasiliev and S. F. Lomaeva, Metals 4, 48 (2003).

    Google Scholar 

  43. L. S. Vasiliev and S. F. Lomaeva, Phys. Met. Metallogr. 107, 152 (2009).

    Google Scholar 

  44. V. N. Chuvildeev, A. V. Nokhrin, G. V. Baranov, A. V. Moskvicheva, M. S. Boldin, D. N. Kotkov, et al. Nanotechnologies in Russia 8, 108 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopalu Karunakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Minh, N., Konyukhov, Y., Karunakaran, G. et al. Enhancement of densification and sintering behavior of tungsten material via nano modification and magnetic mixing processed under spark plasma sintering. Met. Mater. Int. 23, 532–542 (2017). https://doi.org/10.1007/s12540-017-6572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6572-5

Keywords

Navigation