Skip to main content
Log in

Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy ΔE and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Jiang, Y. F. Zheng, Y. X. Tong, F. Chen, B. Tian, L. Li, D. V. Gunderov, and R. Z. Valiev, Intermetallics 54, 133 (2014).

    Article  Google Scholar 

  2. J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, Acta Mater. 90, 213 (2015).

    Article  Google Scholar 

  3. E. H. Kim and B. J. Lee, Met. Mater. Int. 15, 531(2009).

    Article  Google Scholar 

  4. Y. Zhuang, W. Ding, Y. H. Liu, Z. G. Mou, J. H. Sun, and M. Y. Guan, J. Mater. Sci. 50, 3875 (2015).

    Article  Google Scholar 

  5. S. J. Hao, L. S. Cui, D. Q. Jiang, X. D. Han, Y. Ren, and J. Jiang, Science 339, 1191 (2013).

    Article  Google Scholar 

  6. M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, Prog. Mater. Sci. 54, 397 (2009).

    Article  Google Scholar 

  7. L. J. Bearden and F. W. Cooke, J. Biomed, Mater. Res. 14, 289 (1980).

    Google Scholar 

  8. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, and H. Nakajima, Acta Mater. 58, 6790 (2010).

    Article  Google Scholar 

  9. M. D. Segall, P. J. Lindan, M. A. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys: Condens. Matter 14, 2717 (2002).

    Google Scholar 

  10. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  11. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  Google Scholar 

  12. G. P. Francis and M. C. Payne, J. Phys.: Condens. Matter 2, 4395 (1990).

    Google Scholar 

  13. P. Pulay, Mol. Phys. 17, 197 (1969).

    Article  Google Scholar 

  14. T. H. Fischer and J. Almlöf, J. Phys. Chem. 96, 9768 (1992).

    Article  Google Scholar 

  15. O. Mercier, K. N. Melton, G. Gremaud, and J. Hägi, J. Appl. Phys. 51, 1833 (1980).

    Article  Google Scholar 

  16. J. Trivisonno, S. Vatanayon, M. Wilt, J. Washick, and R. Reifenberger, J. Low. Temp. Phys. 12, 153 (1973).

    Article  Google Scholar 

  17. C. L. Tan, X. H. Tian, and W. Cai, Phys. B: Condens. Matter 404, 3662 (2009).

    Article  Google Scholar 

  18. C. Borgia, S. Olliges, M. Dietiker, G. Pigozzi, and R. Spolenak, Thin. Solid. Films 518, 1897 (2010).

    Article  Google Scholar 

  19. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito, Phys. Rev. B 70, 174113 (2004).

    Article  Google Scholar 

  20. L. Koci, Y. Ma, A. R. Oganov, P. Souvatzis, and R. Ahuja, Phys. Rev. B 77, 214101 (2008)

    Article  Google Scholar 

  21. G. F. Li, S. Q. Lu, X. J. Dong, and P. Peng, J. Alloy. Compd. 542, 170 (2012).

    Article  Google Scholar 

  22. X. Y. Shu, S. Q. Lu, G. F. Li, J. W. Liu, and P. Peng, J. Alloy. Compd. 609, 156 (2014).

    Article  Google Scholar 

  23. P. Peng, D. W. Zhou, J. S. Liu, R. Yang, and Z. Q. Hu, Mater. Sci. Eng. A 416, 169 (2006).

    Article  Google Scholar 

  24. Y. F. Zhukovskii, P. Balaya, E. A. Kotomin, and J. Maier, Phys. Rev. Lett. 96, 058302 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G.F., Zheng, H.Z., Shu, X.Y. et al. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study. Met. Mater. Int. 22, 69–74 (2016). https://doi.org/10.1007/s12540-015-5367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5367-9

Keywords

Navigation