Skip to main content
Log in

Superplastic deformation behavior and hot-processing map of the TiNp/2014 Al composite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The superplastic deformation behavior and hot-processing map of the TiNp/2014 Al composite were investigated based on tensile tests conducted at various temperatures (773 K, 798 K, and 818 K) with various strain rates (0.033, 0.167, 0.33, and 0.67 s-1). The results revealed that the influence of strain on the energy dissipation map is negligible. The optimal superplastic deformation parameters corresponding to the peak power dissipation efficiency of 0.65 differ from those corresponding to the maximum elongation of 351%. For the superplastic deformation of TiNp/2014 composite, the deformation activation energy is much higher than that for the lattice self-diffusion in pure aluminum, which can be explained by the combination of mechanisms including grain (subgrain) boundary sliding accommodation, interface sliding accommodation, liquid-phase helper accommodation and load transfer. To avoid voids and wedge cracks, two obvious instability domains in the hot-processing maps should be avoided. The hot-processing maps obtained can approximately, but not accurately enough, optimize superplastic deformation parameters of the TiNp/2014 Al composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Hu, X. Y. Wang, and L. Deng, Matrer, Sci. Eng. A 576A, 45 (2013).

    Article  Google Scholar 

  2. J. S. Jin, X. Y. Wang, H. E. Hu, and J. C. Xia, Met. Mater. Int. 18, 69 (2012).

    Article  Google Scholar 

  3. M. Suresh kumar, Ambresha, K. Venkateswarlu, and V. R. Ranganath, Metall. Mater. Trans. A 45A, 3179 (2014).

    Article  Google Scholar 

  4. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire, Metall. Mater. Trans. A 44A, 2819 (2013).

    Article  Google Scholar 

  5. S. Banerjee, P. S. Robi, and A. Srinivasan, Mater. Trans. A 43A, 3834 (2012).

    Article  Google Scholar 

  6. F. Yin, L. Hua, H. J. Mao, X. H. Han, D. S. Dong, and R. Zhang, Mater. Des. 55, 560 (2014).

    Article  Google Scholar 

  7. L. J. Huang, Y. Z. Zhang, L. Geng, B. Wang, and W. Ren, Matrer. Sci. Eng. A 580A, 242 (2013).

    Article  Google Scholar 

  8. M. Srinivasan, C. Loganathan, R. Narayanasamy, V. Senthilkumar, Q. B. Nguyen, and M. Guta, Mater. Des. 47, 449 (2013).

    Article  Google Scholar 

  9. H. Z. Li, H. J. Wang, M. Zeng, X. P. Liang, and H. T. Liu, Compos. Sci. Technol. 71, 925 (2011).

    Article  Google Scholar 

  10. H.-J. Jun, K. S. Lee, and J. Eckert, Metall. Mater. Trans. A 39A, 1831 (2008).

    Article  Google Scholar 

  11. X. Y. Wang, L. Deng, N. Tang, and J. S. Jin, Metall. Mater. Trans. A, 45A, 3505 (2014).

    Article  Google Scholar 

  12. Y. V. R. K. Prasad, H. L. Gelel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, L. A. Lark, and D. R. Barker, Metall. Trans. A, 15A, 1883 (1984).

    Article  Google Scholar 

  13. Y. V. R. K. Prasad and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, pp.25–157, ASM International, Materials Park, OH (1997).

    Google Scholar 

  14. Y. V. R. K. Prasad, J. Mater. Eng. Perform. 22, 2867 (2013).

    Article  Google Scholar 

  15. Y. F. Han, W. D. Zeng, Y. L. Qi, and Y. Q. Zhao, Mater. Sci. Eng. A 529A, 393 (2011).

    Article  Google Scholar 

  16. W. Zhang, Y. Liu, H. Z. Li, Z. Li, H. Wang, and B. Liu, J. Mater. Process. Technol. 209, 5363 (2009).

    Article  Google Scholar 

  17. J. M. Torralba, C. E. da Costa, and F. Velasco, J. Mater. Process. Technol. 133, 203 (2003).

    Article  Google Scholar 

  18. T. G. Nieh, T. Imai, J. Wadsworth, and S. Kojima, Scripta Metall. Mater. 31, 1685 (1994).

    Article  Google Scholar 

  19. N. Chawla and K. K. Chawla, JOM, 58, 67 (2006).

    Article  Google Scholar 

  20. K. Kang, G. Bae, J. Won, and C. Lee, Acta Mater. 60, 5031 (2012).

    Article  Google Scholar 

  21. Y. V. R. K. Prasad and T. Seshacharyulu, Int. Mater. Rev. 43, 243 (1998).

    Article  Google Scholar 

  22. Y. V. R. K. Prasad, J. Technol. 28, 435 (1990).

    Google Scholar 

  23. Y. V. R. K. Prasad and T. Seshacharyulu, Mater. Sci. Eng. A 243A, 82 (1998).

    Article  Google Scholar 

  24. S. Spigarelli, E. Cerri, P. Cavaliere, and E. Evangelista, Mater. Sci. Eng. A 327A, 144 (2002).

    Article  Google Scholar 

  25. H. J. McQueen, E. Evangelista, N. Jin, and M. E. Kassner, Metall. Mater. Trans. A 26A, 1757 (1995).

    Article  Google Scholar 

  26. D. Liu, H. V. Atkinson, and R. L. Higginson, Mater. Sci. Eng. A 392A, 73 (2005).

    Article  Google Scholar 

  27. W. J. Kim and O. D. Sherby, Acta Mater. 48, 1763 (2000).

    Article  Google Scholar 

  28. R. S. Mishra, T. R. Bieler, and A. K. Mukheriee, Acta Met. Mater. 43, 877 (1995).

    Article  Google Scholar 

  29. G. H. Zahid, R. I. Todd, and P. B. Prangnell, Mater. Sci. Technol. 14, 901 (1998).

    Article  Google Scholar 

  30. M. Mabuchi and K. Higashi, J. Mater. Res. 13, 640 (1998).

    Article  Google Scholar 

  31. T. Sakuma and K. Higashi, Mater. Trans. 40, 702 (1999).

    Article  Google Scholar 

  32. O. D. Sherby, R. H. Klundt, and A. K. Miller, Metall. Mater. Trans. A 8A, 843 (1977).

    Article  Google Scholar 

  33. M. Mabuchi and K. Higashi, Scr. Mater. 34, 1893 (1996).

    Article  Google Scholar 

  34. Y. Li and T. G. Langdon, Acta Mater. 46, 3937 (1998).

    Article  Google Scholar 

  35. M. Mabuchi and K. Higashi, Acta Mater. 47, 1915 (1999).

    Article  Google Scholar 

  36. R. S. Mishra, T. R. Bieler, and A. K. Mukheriee, Acta Met. Mater. 45, 561 (1997).

    Article  Google Scholar 

  37. H. E. Hu, L. Zhen, and T. Imai, Mater. Sci. Technol. 27, 670 (2011).

    Article  Google Scholar 

  38. R. Rai, Metall. Trans. A 12, 1089 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, HE., Wang, XY. Superplastic deformation behavior and hot-processing map of the TiNp/2014 Al composite. Met. Mater. Int. 22, 41–49 (2016). https://doi.org/10.1007/s12540-015-5226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5226-8

Keywords

Navigation