Skip to main content
Log in

Practical determination of friction coefficient of Al 3003 for forming of backward extruded part using simple tip test and inverse finite element analysis

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The friction coefficient for aluminum alloy 3003 was determined from a specially designed tip test and finite element (FE) simulations. Measured radial tip distance after the tip test was compared to the FE simulations by iteratively changing friction coefficient and the best fitting friction coefficient was determined. To consider strain rate effect on flow stress response during large plastic deformation, a new combined Hollomon- Voce hardening law was proposed. The friction under three different surface conditions was considered by the proposed inverse FE analysis. The results showed that there was obvious strain rate effect on the predicted punch load in the tip test. Moreover, the different friction coefficients were numerically determined for punch/workpiece and die/workpiece interfaces. Two possible causes of this difference were discussed by the analysis on contact normal pressure and slip velocity distributions of the two interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Maximov, G. V. Duncheva, A. P. Anchev, and M. D. Ichkova, Comp. Mater. Sci. 83, 381 (2014).

    Article  Google Scholar 

  2. H. Sofuoglu and J. Rasty, Tribol. Int. 32, 327 (1999).

    Article  Google Scholar 

  3. T. Robinson, H. Ou, and C. G. Armstrong, J. Mater. Process. Tech. 153-154, 54 (2004).

    Article  Google Scholar 

  4. T. Nakamura, N. Bay, and Z. L. Zhang, J. Tribol.-T ASME 119, 501 (1997).

    Article  Google Scholar 

  5. Y. T. Im, O. Vardan, G. Shen, and T. Altan, Cirp Ann.-Manuf. Techn. 37, 225 (1988).

    Article  Google Scholar 

  6. T. Nishimura, T. Sato, and Y. Tada, J. Mater. Process. Tech. 53, 726 (1995).

    Article  Google Scholar 

  7. Y.-T. Im, S.-H. Kang, and J.-S. Cheon, J. Manuf. Sci. E-T. ASME 125, 378 (2003).

    Article  Google Scholar 

  8. S.-H. Kang, J.-H. Lee, J.-S. Cheon, and Y.-T. Im, Int. J. Mech. Sci. 46, 855 (2004).

    Article  Google Scholar 

  9. T. J. Shin, Y. H. Lee, J. T. Yeom, S. H. Chung, S. S. Hong, I. O. Shim, N. K. Park, C. S. Lee, and S. M. Hwang, Comput. Method. Appl. M. 194, 3838 (2005).

    Article  Google Scholar 

  10. J. C. Pierret, A. Rassili, G. Vaneetveld, R. Bigot, and J. Lecomte-Beckers, Int. J. Mater. Form. 3, 763 (2010).

    Article  Google Scholar 

  11. H. Bašic, I. Demirdžic, and S. Muzaferija, Int. J. Numer. Meth. Eng. 62, 475 (2005).

    Article  Google Scholar 

  12. P. Chauviere, K. H. Jung, D. K. Kim, H. C. Lee, S. H. Kang, and Y. T. Im, J. Mech. Sci. Technol. 22, 924 (2008).

    Article  Google Scholar 

  13. J. H. Sung, J. H. Kim, and R. H. Wagoner, Int. J. Plasticity 26, 1746 (2010).

    Article  Google Scholar 

  14. W. F. Hosford and R. M. Caddel, Metal Forming: Mechanics and Metallurgy, pp. 91–92, Prentice-Hall International, Inc. Easnglewood Cliffs, NJ (1983).

    Google Scholar 

  15. J.-H. Cheng, Int. J. Numer. Meth. Eng. 26, 1 (1988).

    Article  Google Scholar 

  16. W. K. Liu, T. Belytschko, and H. Chang, Comput. Method. Appl. M. 58, 227 (1986).

    Article  Google Scholar 

  17. D. J. Benson, Comput. Method. Appl. M. 72, 305 (1989).

    Article  Google Scholar 

  18. C. Kim, J.-U. Lee, F. Barlat, and M.-G. Lee, J. Tribol.-T ASME 136, 021606 (2014).

    Article  Google Scholar 

  19. A. Azushima and H. Kudo, Cirp. Ann.-Manuf. Techn. 44, 209 (1995).

    Article  Google Scholar 

  20. M. Chowdhury, M. Khalil, D. Nuruzzaman, and M. Rahaman, Int. J. Mech. Mechatron. Eng 11, 53 (2011).

    Google Scholar 

  21. H. J. Bong, F. Barlat, J. Lee, M. G. Lee, and J. H. Kim, Met. Mater. Int. 22, 276 (2016).

    Article  Google Scholar 

  22. G. Cai, L. Lang, K. Liu, S. Alexandrov, D. Zhang, X. Yang, and C. Guo, Met. Mater. Int. 21, 365 (2015).

    Article  Google Scholar 

  23. J. C. Jang and S. H. Kim, Korean J. Met. Mater. 53, 618 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Kim or M. G. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bong, H.J., Leem, D., Kim, J.H. et al. Practical determination of friction coefficient of Al 3003 for forming of backward extruded part using simple tip test and inverse finite element analysis. Met. Mater. Int. 22, 356–363 (2016). https://doi.org/10.1007/s12540-015-5158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5158-3

Keywords

Navigation