Skip to main content
Log in

Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Microstructural changes and corrosion behavior of pure magnesium for different milling times were investigated. The samples with a finer grain size showed poor corrosion resistance because of unstable or metastable protective film formation after immersion in 0.8 wt% NaCl solution. The corrosion resistance did not improve despite the strong (0002) texture of the sample prepared by spark plasma sintering at 500 °C for 0.3 Ks and milling for 2 h. By studying the microstructural changes and texture development, we concluded that the deformation-dependent grain size is the dominant factor controlling the corrosion properties of mechanically milled magnesium. Increased grain boundary densities lead to an enhancement of the overall surface reactivity and, consequently, the corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Avedesian and H. Baker, Mg and Mg alloys-ASM Speciality Handbook ASM International. 1 st ed., p.91, ASM International, Ohio (1999).

    Google Scholar 

  2. J. R. Davis, J. D. Destefani, T. B. Zorc, G. M. Crankovic, and A. W. Ronke, Metals Handbook 9 th ed., p.253, ASM international, Ohio (1988).

    Google Scholar 

  3. V. M. Segal, Mater. Sci. Eng. A, 197 157 (1995).

    Article  Google Scholar 

  4. A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang, and Y. Nishida, Mater. Sci. Eng. A, 513–514 122 (2009).

    Article  Google Scholar 

  5. E. Prados, V. Sordi, and M. Ferrante, Mater. Sci. Eng. A, 503, 68 (2007).

    Article  Google Scholar 

  6. V. V. Stolyarov, Y. T. Zhu, and T. C. Lowe, Mater. Sci. Eng. A, 303, 82 (2001).

    Article  Google Scholar 

  7. W. J. Kim, K. E. Lee, and S. H. Choi, Mater. Sci. Eng. A, 506, 71 (2009).

    Article  Google Scholar 

  8. H. T. Jeong, T. K. Ha, and W. J. Kim, Korean J. Met. Mater. 43, 860 (2005).

    Google Scholar 

  9. S. J. Yoo and W. J. Kim, Korean J. Met. Mater. 49, 104 (2011).

    Google Scholar 

  10. H. J. Fecht, E. Hellstern, Z. Fu, and W. L. Johnson, Metall. Trans. A, 21, 2333 (1990).

    Article  Google Scholar 

  11. J. Eckert, J. C. Holzer, C. E. Krill, and W. L. Johnson, J. Mater. Res. 7, 1751 (1992).

    Article  Google Scholar 

  12. C. J. Younmgdahl, P. G. Sanders, J. A. Eastman, and J. R. Weertman, Scr. Mater. 37, 809 (1997).

    Article  Google Scholar 

  13. G. W. Nieman and J. R. Weertman, J. Mater. Res. 6, 1012 (1991).

    Article  Google Scholar 

  14. R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  15. A. Shahryari, J. A. Szpunar, and S. Omanovic, Corros. Sci. 51, 677 (2009).

    Article  Google Scholar 

  16. M. Azzi, S. Faghihi, M. Tabrizian, and J. A. Szpunar, The 15 th Int. Conf. on Texture of Materials, (eds. A.D. Rollett), p.117, The American Ceramic Society, Pitsburgh, PA., USA (2008).

  17. J. Kruger, J. Electrochem. Soc. 106, 847 (1959).

    Article  Google Scholar 

  18. B. W. Davis and P. J. Moran, Corros. Sci. 42, 2187 (2000).

    Article  Google Scholar 

  19. A. Blyanov, J. Kutnyakova, N. A. Amirkhanova, V. V. Stolyarov, R. Z. Valiev, X. Z. Liao, Y. H. Zhao, Y. B. Jiang, H. F. Xu, T. C. Lowe, and Y. T. Zhu, Scr. Mater. 51, 225 (2004).

    Article  Google Scholar 

  20. H. S. Kim, S. J. Yoo, J. W. Ahn, D. H. Kim, and W. J. Kim, Mater. Sci. Eng. A, 528, 8479 (2011).

    Article  Google Scholar 

  21. N. Pebere, C. Riera, and F. Dabosi, Electrochim. Acta, 35, 555 (1990).

    Article  Google Scholar 

  22. C. CaO, Electrochim. Acta, 35, 837 (1990).

    Article  Google Scholar 

  23. S. B. Hocevar, S. Daniele, C. Bragato, and B. Ogorevc, Electrochim. Acta, 53, 555 (2007).

    Article  Google Scholar 

  24. E. Kus, Z. Lee, S. Nutt, and F. Mansfeld, Corrosion, 62, 152 (2006).

    Article  Google Scholar 

  25. M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim, and J. C. Lee, Mater. Sci. Eng. A, 366, 282 (2004).

    Article  Google Scholar 

  26. E. Sikora, X. J. Wei, and B. A. Shaw, Corrosion, 60, 387 (2004).

    Article  Google Scholar 

  27. T. C. Tsai and T. H. Chuang, Mater. Sci. Eng. A, 225, 135 (1997).

    Article  Google Scholar 

  28. K. D. Ralston, N. Birbilis, and C. H. J. Davies, Scr. Mater. 63, 1201 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.R., Ahn, J.W., Kim, GH. et al. Corrosion behavior of magnesium powder fabricated by high-energy ball milling and spark plasma sintering. Met. Mater. Int. 20, 1095–1101 (2014). https://doi.org/10.1007/s12540-014-6023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6023-5

Keywords

Navigation