Skip to main content
Log in

Integrated constitutive model for flow behavior of pure Titanium considering interstitial solute concentration

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The aim of this work is to develop a constitutive model that can predict the flow behavior of pure Ti with different interstitial concentrations and grain sizes. To build a database required for identifying material constants, three different grades of Ti were subjected to tensile tests at temperatures of 223, 300, 473, 673 or 773 K and at a fixed strain rate of 10−3 s−1. In the modeling procedure, the mechanical threshold stress model was further modified to capture both the hardening effects attributed to the changes in equivalent oxygen concentration (O eq ) and the softening effect caused by deformation heating at high strain rates. The developed model can reasonably predict the flow behavior of pure Ti having different O eq (0.14–0.32 wt%), and grain size (14.5–90 μm) over a temperature range of 135 to 673 K, and a strain rate range of 2×10−4 to 1400 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Conrad, M. Doner and B. de Meester, Proc. The 2nd International Conference on Titanium Science and Technology, p. 969 (1973).

    Google Scholar 

  2. S. Nemat-Nasser, W. G. Guo, and J. Y. Cheng, Acta Mater. 47, 3705 (1999).

    Article  Google Scholar 

  3. C.-S. Oh and C.-S. Han, Korean J. Met. Mater. 51, 557 (2013).

    Article  Google Scholar 

  4. S. J. Kim, K. Choi, and S.-Y. Choi, Korean J. Met. Mater. 51, 701 (2013).

    Article  Google Scholar 

  5. A. A. Salem, S. R. Kalidindi, and R. D. Doherty, Acta Mater. 51, 4225 (2003).

    Article  Google Scholar 

  6. K. Ahn, H. Huh, and J. Yoon, Met. Mater. Int. 19, 758 (2013).

    Article  Google Scholar 

  7. S. Nemat-Nasser and J. B. Isaacs, Acta Mater. 45, 907 (1997).

    Article  Google Scholar 

  8. S. Nemat-Nasser and R. Kapoor, Int. J. Plasticity. 17, 1351 (2001).

    Article  Google Scholar 

  9. W.-G. Guo and S. Nemat-Nasser, Mechanics of Materials 38, 1090 (2006).

    Article  Google Scholar 

  10. Q. Li, Y. B. Xu, and M. N. Bassim, J. Mater. Proc. Technol. 155–156, 1889 (2004).

    Article  Google Scholar 

  11. F. J. Zerilli and R. W. Armstrong, J. Appl. Phys. 61, 1816 (1987).

    Article  Google Scholar 

  12. A. A. Salem, S. R. Kalidindi, and S. L. Semiatin, Acta Mater. 53, 3495 (2005).

    Article  Google Scholar 

  13. S. R. Kalidindi, J. Mech. Phys. Solid. 46, 267 (1998).

    Article  Google Scholar 

  14. P. S. Follansbee and U. F. Kocks, Acta Metall. 36, 81 (1988).

    Article  Google Scholar 

  15. C. H. Park, S.-G. Hong, and C. S. Lee, Mater. Sci. Eng. A 528, 1154 (2011).

    Article  Google Scholar 

  16. B. de Meester,_M. Doner, and H. Conrad, Metall. Trans. 6A, 65 (1975).

    Google Scholar 

  17. S. Nemat-Nasser, W. G. Guo, V. F. Nesterenko, S. S. Indrakanti, and Y. B. Gu, Mech. Mater. 33, 425 (2001).

    Article  Google Scholar 

  18. G. R. Johnson and W. H. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, pp. 541–547 (1983).

    Google Scholar 

  19. H. Conrad, Effect of Interstitial Solutes on the Strength and Ductility of Titanium, Pergamon Press, Oxford, New York (1981).

    Google Scholar 

  20. G. E. Dieter, Mechanical Metallurgy, pp.310–314, McGraw-Hill, London (1988).

    Google Scholar 

  21. R. C. Picu and A. Majorell, Materials Science and Engineering A 326, 306 (2002).

    Article  Google Scholar 

  22. W. Smith and J. Hashemi, Foundations of Materials Science and Engineering (4th ed.), p. 242 (2006).

    Google Scholar 

  23. Y. B. Chun, S. H. Yu, S. L. Semiatin, and S. K. Hwang, Materials Science and Engineering. A 398, 209 (2005).

    Article  Google Scholar 

  24. V. A. Moskalenko and A. R. Smirnov, Mater. Sci. Eng. A 246, 282 (1998).

    Article  Google Scholar 

  25. W. Huang, X. Zan, X. Nie, M. Gong, Y. Wang, and Y. Xia, Mater. Sci. Eng. A 443, 33 (2007).

    Article  Google Scholar 

  26. C. Park, Y. Son, and C. Lee, J. Mater. Sci. 47, 3115 (2012).

    Article  Google Scholar 

  27. R. Kapoor and S. Nemat-Nasser, Mech. Mater. 27, 1 (1998).

    Article  Google Scholar 

  28. D. R. Chichili, K. T. Ramesh, and K. J. Hemker, Acta Mater. 46, 1025 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J.W., Park, C.H., Lee, T. et al. Integrated constitutive model for flow behavior of pure Titanium considering interstitial solute concentration. Met. Mater. Int. 20, 1017–1025 (2014). https://doi.org/10.1007/s12540-014-6004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6004-8

Keywords

Navigation