Skip to main content
Log in

Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanosheet-structured vanadium pentoxide (V2O5) has been fabricated by a sol-gel method. As revealed by the TEM, the as-synthesized V2O5 crystallites are composed of layer-by-layer stacked nanosheets. As a cathode material for lithium batteries, it exhibits much better electrochemical performance than the starting commercial V2O5 powders. A high specific discharge capacity of 264 mA h g−1 can be obtained for the nanosheet-structured electrodes, which retains the capacity of 90% after 50 cycles. However, the commercial V2O5 only delivers a specific discharge capacity of 206 mA h g−1 with a capacity retention of 64% after 50 cycles. Moreover, the nanosheet-structured V2O5 electrodes show much-improved C-rate capability. The superior cycling performance demonstrates that the nanosheet-structured V2O5 is a promising cathode material in lithium-ion battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon and M. Armand, Nature. 414, 359 (2001).

    Article  Google Scholar 

  2. B. Scrosati and J. Garche, J. Power Sources. 195, 1419 (2010).

    Article  Google Scholar 

  3. Y. Wang and G. Cao, Chem. Mater. 18, 1787 (2006).

    Google Scholar 

  4. Y. Wang and G. Cao, Adv. Mater. 20, 2251 (2008).

    Article  Google Scholar 

  5. J. M. McGraw, C. S. Bahn, P. A. Parilla, J. D. Perkins, D. W. Readey, and D. S. Ginley, Electrochim. Acta. 45, 187 (1999).

    Article  Google Scholar 

  6. Y. Wang, K. Takahashi, K. Lee, and G. Cao, Adv. Funct. Mater. 16, 1133 (2006).

    Article  Google Scholar 

  7. K. Takahashi, S. J. Limmer, Y. Wang, and G. Cao, J. Phys. Chem. B 108, 9795 (2004).

    Article  Google Scholar 

  8. A. Pan, J. G. Zhang, Z. Nie, G. Cao, B. W. Arey, G. Li, S. Q. Liang, and J. Liu, J. Mater. Chem. 20, 9193 (2010).

    Article  Google Scholar 

  9. Y. L. Cheah, N. Gupta, S. S. Pramana, V. Aravindan, G. Wee, and M. Srinivasan, J. Power Sources 196, 6465 (2011).

    Article  Google Scholar 

  10. E. A. Ponzio, T. M. Benedetti, and R. M. Torresi, Electrochim. Acta 52, 4419 (2007).

    Article  Google Scholar 

  11. G. Li, S. Pang, L. Jiang, Z. Guo, and Z. Zhang, J. Phys. Chem. B 110, 9383 (2006).

    Article  Google Scholar 

  12. Y. Wang, H. J. Zhang, K. W. Siah, C. C. Wong, J. Lin, and A. Borgna, J. Mater. Chem. 21, 10336 (2011).

    Article  Google Scholar 

  13. F. Zhou, X. Zhao, Y. Liu, C. Yuan, and L. Li, Eur. J. Inorg. Chem. 16, 2506 (2008).

    Article  Google Scholar 

  14. Y. Wang, K. Takahashi, H. Shang, and G. Cao, J. Phys. Chem. B 109, 3085 (2005).

    Article  Google Scholar 

  15. S. Wang, S. Li, Y. Sun, X. Feng, and C. Chen, Energy Environ. Sci. 4, 2854 (2011).

    Article  Google Scholar 

  16. A. Pan, H. B. Wu, L. Yu, T. Zhu, and X. W. Lou, Appl. Mater. Interfaces. 4, 3874 (2012).

    Article  Google Scholar 

  17. S. Wang, Z. Lu, D. Wang, C. Li, C. Chen, and Y. Yin, J. Mater. Chem. 21, 6365 (2011).

    Article  Google Scholar 

  18. S. Ding, D. Luan, F. Y. C. Boey, J. S. Chen, and X. W. Lou, Chem. Commun. 47, 7155 (2011).

    Article  Google Scholar 

  19. J. S. Chen, L. A. Archer, and X. W. Lou, Mater. Chem. 21, 9912 (2011).

    Article  Google Scholar 

  20. S. Ding, J. S. Chen, D. Luan, F. Y. C. Boey, S. Madhavi, and X. W. Lou, Chem. Commun. 47, 5780 (2011).

    Article  Google Scholar 

  21. Z. L. Wang, D. Xu, L. M. Wang, and X. B. Zhang, Chem. Plus Chem. 77, 124 (2012).

    Google Scholar 

  22. A. Pan, J. G. Zhang, G. Cao, S. Liang, C. Wang, Z. Nie, B. W. Arey, W. Xu, D. Liu, J. Xiao, G. Li, and J. Liu, J. Mater. Chem. 21, 10077 (2011).

    Article  Google Scholar 

  23. A. Pan, J. Liu, J. G. Zhang, G. Cao, W. Xu, Z. Nie, X. Jie, D. Choi, B. W. Arey, C. Wang, and S. Liang, J. Mater. Chem. 21, 1153 (2011).

    Article  Google Scholar 

  24. R. J. Cava, A. Santoro, D. W. Murphy, S. M. Zahurak, R. M. Fleming, P. Marsh, and R. S. Roth, J. Solid State Chem. 65, 63 (1986).

    Article  Google Scholar 

  25. S. H. Ng, T. J. Patey, R. Büchel, F. Krumeich, J. Z. Wang, H. K. Liu, S. E. Pratsinis, and P. Novák, Phys. Chem. Chem. Phys. 11, 3748 (2009).

    Article  Google Scholar 

  26. J. S. Braithwaite, C. R. A. Catlow, J. D. Gale, J. H. Harding, and P. E. Ngoepe, J. Mater. Chem. 10, 239 (2000).

    Article  Google Scholar 

  27. A. Odani, V. G. Pol, S. V. Pol, M. Koltypin, A. Gedanken, and D. Aurbach, Adv. Mater. 18, 1431 (2006).

    Article  Google Scholar 

  28. M. Koltypin, V. Pol, A. Gedanken, and D. Aurbach, J. Electrochem. Soc. 154, A605 (2007).

    Article  Google Scholar 

  29. X. H. Rui, N. Ding, J. Liu, C. Li, and C. H. Chen, Electrochim. Acta 55, 2384 (2010).

    Article  Google Scholar 

  30. S. H. Ng, S. Y. Chew, J. Wang, D. Wexler, Y. Tournayre, K. Konstantinov, and H. K. Liu, J. Power Sources. 174, 1032 (2007).

    Article  Google Scholar 

  31. L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, and S. Zhao, Nano Lett. 10, 4750 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Qin, M., Tang, Y. et al. Facile synthesis of nanosheet-structured V2O5 with enhanced electrochemical performance for high energy lithium-ion batteries. Met. Mater. Int. 20, 983–988 (2014). https://doi.org/10.1007/s12540-014-5025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-5025-7

Keywords

Navigation