Skip to main content
Log in

Properties and pulsed current activated consolidation of nanostuctured MgSiO3-MgAl2O4 composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. As nanomaterials possess high strength, high hardness, excellent ductility and toughness, undoubtedly, more attention has been paid for the application of nanomaterials. Nanopowders of MgO, Al2O3 and SiO2 were made by high energy ball milling. The simultaneous synthesis and consolidation of nanostuctured MgAl2O4-MgSiO3 composites from milled 2MgO, Al2O3 and SiO2 powders was investigated by the pulsed current activated sintering process. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition of grain growth. Highly dense nanostructured MgAl2O4-MgSiO3 composites were produced with a simultaneous application of 80 MPa pressure and a pulsed current of 2000A within 1min. The fracture toughness of MgAl2O4-Mg2SiO4 composites sintered from 60 mol%MgO-20 mol%Al2O3-20mol%SiO2 powders milled for 4 h was 3.2MPa·m1/2. The fracture toughness of MgAl2O4-MgSiO3 composite is higher than that of monolithic MgAl2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Anappan, L. J. Berchmans, and C. O. Augustin, Mater. Lett. 58, 2283 (2004).

    Article  Google Scholar 

  2. C. Baudin, R. Martinez, and P. Pena, J. Am. Ceram. Soc. 78, 1857 (1995).

    Article  CAS  Google Scholar 

  3. P. Hing, J. Mater. Sci. 11, 1919 (1976).

    Article  CAS  Google Scholar 

  4. M. Sherif El-Eskandarany, J. Alloys Comd. 305, 225 (2000).

    Article  CAS  Google Scholar 

  5. L. Fu, L. H. Cao, and Y. S. Fan, Scripta Mater. 44, 1061 (2001).

    Article  CAS  Google Scholar 

  6. K. Niihara, A. Nikahira, Advanced Structural Inorganic Composite, Elsevier Scientific Publishing Co., Trieste, Italy (1990).

    Google Scholar 

  7. S. Berger, R. Porat, and R. Rosen, Progress in Materials 42, 311 (1997).

    Article  Google Scholar 

  8. Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995).

    Article  CAS  Google Scholar 

  9. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Mater. Sci. Eng. A 383, 229 (2004).

    Article  Google Scholar 

  10. I. J. Shon, H. J. Wang, C. Y. Suh, S. W. Cho, and W. B. Kim, Korean J. Met. Mater. 49, 374 (2011).

    CAS  Google Scholar 

  11. F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, and J. C. Liepce, Mater. Sci. Eng. A 262, 279 (1999).

    Article  Google Scholar 

  12. I. J. Shon, B. R. Kim, J. M. Doh, J. K. Yoon, and K. D. Woo, J. Alloys Compd. 489, L4 (2010).

    Article  CAS  Google Scholar 

  13. M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105, 2921 (2005).

    Article  CAS  Google Scholar 

  14. J. Jung, S. Kang, Scripta Mater. 56, 561 (2007).

    Article  CAS  Google Scholar 

  15. S. L. Du, S. H. Cho, I. Y. Ko, J. M. Doh, J. K. Yoon, S. Y. Park, and I. J. Shon, Korean J. Met. Mater. 49, 231 (2011).

    Article  CAS  Google Scholar 

  16. H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011).

    Article  CAS  Google Scholar 

  17. N. R. Park, I. Y. Ko, J. M. Doh, J. K. Yoon, and I. J. Shon, Journal of Ceramic Processing Research 12, 660 (2011).

    Google Scholar 

  18. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).

    Article  CAS  Google Scholar 

  19. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett. 85, 573 (2004).

    Article  CAS  Google Scholar 

  20. J. R. Friedman, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).

    Article  CAS  Google Scholar 

  21. J. E. Garay, J. E. Garay. U. Anselmi-Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).

    Article  CAS  Google Scholar 

  22. C. Suryanarayana, M. Grant Norton, X-ray Diffraction A Practical Approach, Plenum Press, New York (1998).

    Book  Google Scholar 

  23. O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermo Chemical Properties of Inorganic Substances, p.1167, Springer-Verlag, New York (1991).

    Google Scholar 

  24. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982).

    Article  Google Scholar 

  25. I. J. Shon, S. M. Kwak, J. M. Doh, B. J. Park, J. K. Yoon, Res. Chem. Intermed. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jin Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shon, IJ., Du, SL., Doh, JM. et al. Properties and pulsed current activated consolidation of nanostuctured MgSiO3-MgAl2O4 composites. Met. Mater. Int. 19, 1041–1045 (2013). https://doi.org/10.1007/s12540-013-5017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-5017-z

Key words

Navigation