Skip to main content
Log in

Analysis and estimation of yield strength of API X80 linepipe steel pipe by low-cycle fatigue tests

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the present study, spiral piping was conducted on API X80 linepipe steel, and the outer and inner wall pipe yield strengths were measured. A low-cycle fatigue test was conducted on a leveled X80 steel sheet to simulate piping and flattening processes, and the strain hardening and Bauschinger effects, induced from different strain histories, were evaluated and combined using Swift’s equation and the Bauschinger stress parameter, respectively. By analyzing the stress-strain curves obtained from the low-cycle fatigue test, the yield strengths of the outer and inner walls were estimated to be 592 MPa and 492 MPa, respectively, which are lower by 20–80 MPa than that of the actual pipe used. Possible reasons for measured and estimated yield strength differences could be the simulation determining procedure of the pre-strain and Bauschinger stress parameters, preposition of same strain hardening behavior depending on strain history, and pre-strain differences depending on thickness location in the steel sheet during piping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. K. Honeycombe, Scand. J. Metall. 8, 21 (1956).

    Google Scholar 

  2. H. Watanabe, Y. E. Smith, and R. D. Pehlke, The Hot Deformation of Austenite (ed. J. B. Balance), p. 140, TMSAIME, New York (1997).

    Google Scholar 

  3. Specification for High-Test Linepipe, Standard 5XL, American Petroleum Institute, API (1996).

  4. Material Specification, Specification No. 2950-6-6, Canadian Arctic Gas Pipeline Limited (1973).

  5. G. E. Dieter, Mechanical Metallurgy, 3 rd ed., p. 236, McGraw-Hill, New York (1979).

    Google Scholar 

  6. R. Sowerby, Y. Tomita, and D. K. Uko, Mater. Sci. Eng. 41, 43 (1979).

    Article  CAS  Google Scholar 

  7. T. Taira, T. Osuka, and Y. Ishida, Proc. 15 th Mechanical Working and Steel Processing Conf., p. 33, Pittsburgh (1977).

  8. G. Tither and M. Lavite, J. Met. 27, 15 (1975).

    CAS  Google Scholar 

  9. K. J. Pascoe, J. Strain Analysis 6, 167 (1971).

    Article  Google Scholar 

  10. C. D. Singh and V. Ramaswamy, Steel India 6, 89 (1983).

    CAS  Google Scholar 

  11. A. Goel, R. K. Ray, and G. S. Murty, Scripta Metall. 17, 375 (1983).

    Article  CAS  Google Scholar 

  12. L. Zhonghua and G. Haicheng, Metall. Trans. A21, 717 (1990).

    Google Scholar 

  13. N. Ibrahim and J. D. Embury, Mater. Sci. Eng. A 19, 147 (1975).

    Article  CAS  Google Scholar 

  14. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-strength Low-alloy Steels, p. 80, Butterworth and Co., Ltd. (1988).

  15. J. Takamura and S. Mizoguchi, Proc. 6 th Int. Iron Steel Congr., p. 591, ISIJ, Japan (1990).

    Google Scholar 

  16. B. Hwang, T. Lee, and S. Kim, Met. Mater. Int. 16, 905 (2010).

    Article  CAS  Google Scholar 

  17. D. Wen, Met. Mater. Int. 16, 13 (2010).

    Article  CAS  Google Scholar 

  18. ASTM Standard E8m-09, Standard Test Methods for Tension Testing of Metallic Materials, ASTM (2009).

  19. ASTM Standard E606-92, Standard Practice for Strain-Controlled Fatigue Testing, ASTM (1998).

  20. K. Nakajima, W. Mizutani, T. Kikuma, and H. Matumoto, Trans. ISIJ 15, 1 (1975).

    Google Scholar 

  21. K. J. Park and Y. R. Jeo, J. Kor. Inst. Met. Mater. 36, 1777 (1998).

    CAS  Google Scholar 

  22. Y. Tomota, M. Umemoto, N. Komatsubara, A. Hiramatsu, N. Nakajima, A. Moriya, T. Watanabe, S. Nanba, G. Anan, K. Kunishige, Y. Higo, and M. Miyahara, ISIJ Int. 32, 343 (1992).

    Article  CAS  Google Scholar 

  23. N. S. Mishra, S. Mishra, and V. Ramaswamy, Metall. Mater. Trans. A 20, 2819 (1989).

    Article  Google Scholar 

  24. J. H. Hollomon, Trans. AIME 162, 268 (1945).

    Google Scholar 

  25. H. W. Swift, J. Mech. Phys. Solids 1, 1 (1952).

    Article  Google Scholar 

  26. S. K. Kim, Y. M. Kim, Y. J. Lim, and N. J. Kim, Proc. 15 th Conf. on Mechanical Behaviors of Mater., p.177, Seoul, Korea (2001).

  27. A. Abel and H. Muir, Phil. Mag. 26, 489 (1972).

    Article  CAS  Google Scholar 

  28. T. Araki, Atlas for Bainitic Microstructures, p.1, ISIJ, Tokyo, Japan (1992).

    Google Scholar 

  29. G. Krauss and S. W. Thompson, ISIJ 35, 937 (1995).

    Article  CAS  Google Scholar 

  30. Y. M. Kim, S. K. Kim, Y. J. Lim, and N. J. Kim, ISIJ Int. 42, 1571 (2002).

    Article  CAS  Google Scholar 

  31. I. Choi, Y. Park, D. Son, S. Kim, and M. Moon, Met. Mater. Int. 16, 27 (2010).

    Article  CAS  Google Scholar 

  32. Z. Tang and W. Strumpf, Mater. Charact. 59, 717 (2008).

    Article  CAS  Google Scholar 

  33. N. Ma, T. Park, D. Kim, C. Kim, and K. Chung, Met. Mater. Int. 16, 427 (2010).

    Article  CAS  Google Scholar 

  34. S. J. Kim, C. G. Lee, T. H. Lee, and C. S. Oh, Scripta Mater. 48, 539 (2003).

    Article  CAS  Google Scholar 

  35. M. Honjo and Y. Saito, ISIJ Int. 40, 914 (2000).

    Article  CAS  Google Scholar 

  36. C. W. Choi, H. J. Koh, and S. Lee, Metall. Mater. Trans. A 31, 2669 (2000).

    Article  Google Scholar 

  37. J. S. Park, D. W. Kim, and Y. W. Chang, Trans. Mater. Process. 15, 118 (2006).

    Article  Google Scholar 

  38. Y. M. Kim, S. K. Kim, and N. J. Kim, Mater. Sci. Forum 475–479, 282 (2005).

    Google Scholar 

  39. H. K. Sung, S. Y. Shin, B. Hwang, C. G. Lee, N. J. Kim, and S. Lee, Korean J. Met. Mater. 48, 798 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, S.S., Han, S.Y., Shin, S.Y. et al. Analysis and estimation of yield strength of API X80 linepipe steel pipe by low-cycle fatigue tests. Met. Mater. Int. 18, 597–606 (2012). https://doi.org/10.1007/s12540-012-4005-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-4005-z

Key words

Navigation