Skip to main content
Log in

Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Chae, G. D. Lee, Y. S. Suh, K. H. Lee, and Y. S. Kim, Trans. Mater. Process. 18, 236 (2009).

    Article  Google Scholar 

  2. H. Karbasian, C. Klimmek, A. Brosius, and A. E. Tekkaya, Proc. 1 st Int. conf. on Hot Sheet Metal Forming of High-performance Steel, p.97, GRIPS media, Kassel, Germany (2008).

    Google Scholar 

  3. D. Berglund, K. Amundsson, and L.-O. Hellgren, Proc. 1 st Int. Conf. on Hot Sheet Metal Forming of High-Performance Steel, p.165, GRIPS media, Kassel, Germany (2008).

    Google Scholar 

  4. S. Sankaran, V. Subramanya Sarma, and K. A. Padmanabhan, Mater. Sci. Eng. A 34, 328 (2003).

    Google Scholar 

  5. P. C. Chakraborti and M. K. Mitra, Int. J. Fatigue 27, 511 (2005).

    Article  CAS  Google Scholar 

  6. P. C. Chakraborti and M. K. Mitra, Int. J. Fatigue 28, 194 (2006).

    Article  CAS  Google Scholar 

  7. V. Subramanya Sarma and K. A. Padmanabhan, Int. J. Fatigue 19, 135 (1997).

    Article  Google Scholar 

  8. S. R. Mediratta, V. Ramaswamy, and P. Rama Rao, Int. J. Fatigue 7, 101 (1985).

    Article  CAS  Google Scholar 

  9. L. Wännman and A. Melander, Mater. Design 12, 129 (1991).

    Article  Google Scholar 

  10. A. M. Sherman and R. G. Davies, Int. J. Fatigue 3, 36 (1981).

    Article  Google Scholar 

  11. P. N. Thielen, M. E. Fine, and R. A. Fournelle, Acta Met. 24, 1 (1976).

    Article  Google Scholar 

  12. S. R. Mediratta, V. Ramaswamy, and P. Rama Rao, Int. J. Fatigue 7, 107 (1985).

    Article  CAS  Google Scholar 

  13. S. K. Bhambri, C. R. Prasad, and R. Vasudevan, Int. J. Fatigue 9, 239 (1987).

    Article  CAS  Google Scholar 

  14. P. Farsetti and A. Blarasin, Int. J. Fatigue 10, 153 (1988).

    Article  CAS  Google Scholar 

  15. J. P. Lucas and W. W. Gerberich, Int. J. Fatigue 7, 31 (1985).

    Article  CAS  Google Scholar 

  16. H. J. Lee, B. D. Joo, S. P. Park, and Y. H. Moon, Proc. Kor. Soc. Tech. Plast. Conf., p.203, Daegu, Korea (2010).

    Google Scholar 

  17. J. H. Devletian and R. W. Heine, Welding J. 54, 45 (1975).

    Google Scholar 

  18. K. C. Cho, D. J. Mun, Y. M. Koo, and J. S. Lee, Mater. Sci. Eng. A 528, 3556 (2011).

    Article  Google Scholar 

  19. K. C. Cho, D. J. Mun, M. H. Kang, J. S. Lee, J. K. Park, and Y. M. Koo, ISIJ Int. 50, 839 (2010).

    Article  CAS  Google Scholar 

  20. Z. Pu and K-H. Wu, Scripta Mat. 34, 169 (1996).

    Article  CAS  Google Scholar 

  21. W. S. Jang, C. H. Suh, S. K. Oh, D. B. Kim, J. H. Sung, YC. Jung, and Y. S. Kim, Trans. KSME 34, 1419 (2010).

    Google Scholar 

  22. M. Naderi, L. Durrenberger, A. Molinari, and W. Bleck, Mater. Sci. Eng. A 478, 130 (2008).

    Article  Google Scholar 

  23. M. Ueno and T. Inoue, Trans. Iron Steel Inst. Jpn. 13, 210 (1973).

    CAS  Google Scholar 

  24. Ph. M, J. Rofes-Vernis, and D. Thivellier, Proc. Int. Sym. on Boron Steel, p.1, The Metallurgical Society of AIME, Milwaukee, USA (1979).

    Google Scholar 

  25. D. V. Wilson and J. K. Thomas, Acta Met. 18, 1197 (1970).

    Article  CAS  Google Scholar 

  26. N. M. Abd-Allah, M. S. El-Fadaly, M. M. Megahed, and A. M. Eleiche, J. Mater. Eng. Perform. 10, 576 (2001).

    Article  CAS  Google Scholar 

  27. T. L. Anderson, Fracture Mechanics, 2 nd ed., p.375, CRC Press (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Suk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, C.H., Jang, W.S., Oh, S.K. et al. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet. Met. Mater. Int. 18, 559–566 (2012). https://doi.org/10.1007/s12540-012-4002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-4002-2

Key words

Navigation