Skip to main content
Log in

Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium ion batteries

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nano-sized SnO2 particles supported on ball-milled graphite were manufactured by the in situ NaBH4 reduction method and were used as an anode active material in lithium-ion batteries. Their physical and electrochemical characteristics were investigated using various characterization techniques: Raman spectroscopy, x-ray diffraction (XRD), transmission electron microscopy (TEM), and cyclic voltammetry (CV). From coin half-cell tests, the SnO2 particles supported on graphite that was ball-milled for 24 hr showed a reversible capacity better than that of commercial graphite and other SnO2/graphite materials for which the graphite was ball-milled for longer lengths of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yao, X. Shen, B. Wang, H. Liu, and G. Wang, Electrochem. Commun. 11, 1849 (2009).

    Article  CAS  Google Scholar 

  2. K. E. Aifantis, S. Brutti, S. A. Hackney, T. Sarakonsri, and B. Scrosati, Electrochem. Acta 55, 5071 (2010).

    Article  CAS  Google Scholar 

  3. Y. J. Kim, H. Lee, and H. J. Sohn, Electrochem. Commun. 11, 2125 (2009).

    Article  CAS  Google Scholar 

  4. H. Zhao, C. Jiang, X. Hea, J. Ren and C. Wan, Electrochim. Acta 52, 7820 (2007).

    Article  CAS  Google Scholar 

  5. J. H. Jeong, D. W. Jung, B. S. Kong, J. K. Lee, and E. S. Oh, J. Ceram. Proc. Res. 12, s105 (2011).

    Google Scholar 

  6. K. E. Aifantis, S. Brutti, S. A. Hackney, T. Sarakonsri, and B. Scrosati, Electrochim. Acta 55, 5071 (2010).

    Article  CAS  Google Scholar 

  7. B. Liu, Z. P. Guob, G. Du, Y. Nuli, M. F. Hassan, and D. Jia, J. Power Sources 195, 5382 (2010).

    Article  CAS  Google Scholar 

  8. W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H. Yang, and N. L. Wu, J. Electrochem. Soc. 152, A1719 (2005).

    Article  CAS  Google Scholar 

  9. D. Y. Kim, H. J. Ahn, J. S. Kim, I. P. Kim, J. H. Kweon, T. H. Nam, K. W. Kim, J. H. Ahn, and S. H. Hong, Electron. Mater. Lett. 5, 183 (2009).

    Article  CAS  Google Scholar 

  10. M. Aua, S. McWhorter, H. Ajo, T. Adams, Y. Zhao, and J. Gibbs, J. Power Sources 195, 3333 (2010).

    Article  Google Scholar 

  11. S. Yang, H. Song, and X. Chen, J. Power Sources 173, 487 (2007).

    Article  CAS  Google Scholar 

  12. C. Wang, A. J. Appleby, and F. E. Little, J. Power Sources 93, 174 (2001).

    Article  CAS  Google Scholar 

  13. J. T. Vaughey, J. O’Hara, and M. M. Thackeray, Electrochem. Solid State Lett. 3, 13 (2000).

    Article  CAS  Google Scholar 

  14. Y. Kim, Y. Yoon, and D. Shin, J. Anal. Appl. Pyrolysis 85, 557 (2009).

    Article  CAS  Google Scholar 

  15. T. Brousse, R. Petoux, U. Herterich, and D. M. Schleich, J. Electrochem. Soc. 145, 1 (1998).

    Article  CAS  Google Scholar 

  16. C. L. Zhu, M. L Zhang, Y. J. Qiao, P. Gao, and Y. J. Chen, Mater. Res. Bull. 45, 437 (2010).

    Article  CAS  Google Scholar 

  17. F. M. Courtel, E. A. Baranova, Y. Abu-Lebdeh, and I. J. Davidson, J. Power Sources 195, 2355 (2010).

    Article  CAS  Google Scholar 

  18. T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, and H. Q. Wu, Electrochem. Commun. 9, 886 (2007).

    Article  CAS  Google Scholar 

  19. G. X. Wang, J. H. Ahn, J. Yao, S. Bewlay, and H. K. Liu, Electrochem. Commun. 6, 689 (2004).

    Article  CAS  Google Scholar 

  20. P. Gu, R. Cai, Y. Zhou, and Z. Shao, Electrochim. Acta 55, 3876 (2010).

    Article  CAS  Google Scholar 

  21. J. T. Kang, D. W. Jung, S. Park, J. H. Lee, J. J. Ko, and J. B. Kim, Int. J. Hydrogen Energy 35, 3727 (2010).

    Article  CAS  Google Scholar 

  22. A. C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  23. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).

    Article  CAS  Google Scholar 

  24. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  25. Y. Wang, Z. Ni, T. Yu, Z. X. Shen, H. Wang, Y. Wu, W. Chen, and A. T. S. Wee, J. Phys. Chem. C 112, 10637 (2008).

    Article  CAS  Google Scholar 

  26. S. D’Andrea, S. Panero, P. Reale, and B. Scrosati, Ionics 6, 129 (2000).

    Google Scholar 

  27. R. Demir-Cakan, Y.-S. Hu, M. Antonietti, J. Maier, and M.-M. Titirici, Chem. Mater. 20, 1227 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Suok Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, DW., Jeong, JH., Cha, BC. et al. Effects of ball-milled graphite in the synthesis of SnO2/graphite as an active material in lithium ion batteries. Met. Mater. Int. 17, 1021–1026 (2011). https://doi.org/10.1007/s12540-011-6022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-6022-8

Keywords

Navigation