Skip to main content
Log in

Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We have successfully fabricated highly densified aluminum (Al)-diamond composite materials by a simple hot press method. The thermal conductivity of the Al-diamond composite materials was measured. These materials had different types, sizes and fractions of diamond. These obtained values were discussed based on theoretically calculated values. The thermal conductivity of the composite materials, measured by Laser-Flash method, was found to have slightly increased compared to that of pure bulk Al. The obtained microstructures of the composite materials showed a lot of cleavage existing in the interface between the Al matrix and the diamond particles, which led to the low increment of the thermal conductivity. Moreover, Al-diamond bulk materials with different sintering temperatures in solid state, liquid phase, and transient region between solid and liquid of Al, have been synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. B. Johnson and B. Sonuparlak, J. Mater. Res. 5, 1169 (1993).

    Article  Google Scholar 

  2. S. Elomari, R. Boukhili, C. S. Marchi, A. Mortensen, and D. J. Lloyd, J. Mater. Sci. 32, 2131 (1997).

    Article  CAS  Google Scholar 

  3. V. V. Rao, M. V. K. Murthy, and J. Nagaraju, Comp. Sci. Technol. 64, 2459 (2004).

    Article  CAS  Google Scholar 

  4. S. Akbulut, Y. Ocak, K. Keslioglu, and N. Marasli, J. Phy. Chem. Sol. 70, 72 (2009).

    Article  CAS  Google Scholar 

  5. M. Battabyal, O. Beffort, S. Kleiner, S. Vaucher, and L. Rohr, Dia. Rel. Mater. 17, 1438 (2008).

    Article  CAS  Google Scholar 

  6. P. M. Geffroy, T. Charitier, and J. F. Silvain, Adv. Eng. Mater. 7, 547 (2007).

    Article  Google Scholar 

  7. P. M. Geffroy, T. Charitier, and J. F. Silvain, J. Eur. Ceram. Soc. 27, 291 (2007).

    Article  CAS  Google Scholar 

  8. P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, Comp. Sci. Technol. 66, 2677 (2006).

    Article  CAS  Google Scholar 

  9. F. A. Khalid, O. Beffort, U. E. Klotz, B. A. Keller, and P. Gasser, Dia. Rel. Mater. 13, 393 (2004).

    Article  CAS  Google Scholar 

  10. S. A. Suilik, M. Oshima, T. Tetsui, and K. Hasezaki, Vacuum 82, 1325 (2008).

    Article  Google Scholar 

  11. T. Schubert, B. Trindade, T. Weibgarber, and B. Kieback, Mater. Sci. Eng. A 475, 39 (2008).

    Article  Google Scholar 

  12. Y. Yamamoto, T. Imai, K. Tanabe, T. Tsuno, Y. Kumazawa, and N. Fujimori, Dia. Rel. Mater. 6, 1057 (1997).

    Article  CAS  Google Scholar 

  13. K. Yoshida and H. Morigami, Microelectron. Reli. 44, 303 (2004).

    Article  CAS  Google Scholar 

  14. P. M. Geffroy, T. Charitier, and J. F. Silvain, Adv. Eng. Mater. 4, 400 (2008).

    Article  Google Scholar 

  15. O. Beffort, F. A. Khalid, L. Weber, P. Ruch, U. E. Klotz, S. Meier, S Kleiner, Dia. Rea. Mater. 15, 1250 (2006).

    Article  CAS  Google Scholar 

  16. K. Chihiro, JP Patent, JP2000303126 (2000).

  17. R. M. German, Sintering Theory and Practice, John Wiley & Sons, New York (1996).

    Google Scholar 

  18. M. N. Rahaman, Ceramic Processing and Sintering, Marcel Dekker, New York (1995).

    Google Scholar 

  19. O. Sudre and F. F. Lange, J. Am. Ceram. Soc. 75, 519 (1992).

    Article  CAS  Google Scholar 

  20. J. Besson, Mech. Mater. 19, 103 (1995).

    Article  Google Scholar 

  21. T. Laha, S. Kuchibhatla, S. Seal, W. Li, and A. Agarwal, Acta Mater. 55, 1059 (2007).

    Article  CAS  Google Scholar 

  22. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Carbon 47, 570 (2009).

    Article  CAS  Google Scholar 

  23. M. Kubota, J. Alloy. Compd. 434, 294 (2007).

    Article  Google Scholar 

  24. M. Zadra, F. Casari, L. Girardini, and A. Molinari, Powder Metall. 50, 40 (2007).

    Article  CAS  Google Scholar 

  25. G. Xie, O. Ohashi, K. Chiba, N. Yamaguchi, M. Song, K. Furuya, and T. Noda, Mater. Sci. Eng. A 359, 384 (2003).

    Article  Google Scholar 

  26. M. Omori, Mater. Sci. Eng. A 287, 183 (2000).

    Article  Google Scholar 

  27. H. Kwon, D. Park, Y. Park, J.F. Silvain, A. Kawasaki, and Y. Park, Met. Mater. Int. 16, 71 (2010).

    Article  CAS  Google Scholar 

  28. L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Ruhle, Acta mater. 54, 5367 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansang Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, H., Leparoux, M., Heintz, JM. et al. Fabrication of single crystalline diamond reinforced aluminum matrix composite by powder metallurgy route. Met. Mater. Int. 17, 755–763 (2011). https://doi.org/10.1007/s12540-011-1010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-011-1010-6

Keywords

Navigation