Skip to main content
Log in

Hot corrosion behavior of ni-base superalloys in a lithium molten salt

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The electrolytic reduction of a spent oxide fuel involves the liberation of the oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the process equipments such as the electroreducer and the salt purification vessel in the pyrochemical process. In this study, the corrosion behaviors of superalloys N-1, N-2 and N-3 in a molten LiCl-Li2O salt under an oxidizing atmosphere were investigated at 650 °C for 72 h to 216 h. Superalloy N-1 showed the highest corrosion resistance among the examined alloys. The corrosion products of superalloys N-1 and N-2 were NiO, Cr2O3, and NiCr2O4, while NiO, Cr2O3, LiAl2Cr3O8 were identified as the corrosion products of superalloy N-3. For superalloy N-1, its outer corrosion layer was more continuous, dense and adherent compared to those of N-2 and N-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Rapp, Corros. Sci. 44, 209 (2002).

    Article  CAS  Google Scholar 

  2. M. A. Uusitalo, P. M. J. Vuoristo, and T. A. Mantyla, Corros. Sci. 46, 1311 (2004).

    Article  CAS  Google Scholar 

  3. J. G. Gonzalez, S. Haro, A. Martinez-Villafane, V. M. Salinas-Bravo, and J. Porcayo-Calderon, Mat. Sci. Eng. A 435–436, 258 (2006).

    Article  CAS  Google Scholar 

  4. B. Zhu, and G. Lindbergh, Electrochim. Acta 46, 2593 (2001).

    Article  CAS  Google Scholar 

  5. S. Mitsushima, N. Kamiya, and K. I. Ota, J. Electrochem. Soc. 137, 2713 (1990).

    Article  CAS  Google Scholar 

  6. T. Ishitsuka and K. Nose, Corros. Sci. 44, 247 (2002).

    Article  CAS  Google Scholar 

  7. B. P. Mohanty and D. A. Shores, Corros. Sci. 46, 2893 (2004).

    Article  CAS  Google Scholar 

  8. F. Colom and A. Bodalo, Corros, Sci. 12, 73 (1972).

    Google Scholar 

  9. A. Ruh and M. Spiegel, Corros. Sci. 48, 679 (2006).

    Article  CAS  Google Scholar 

  10. T. Tzvetkoff and J. Kolchakov, Mater. Chem. Phys. 87, 201 (2004).

    Article  CAS  Google Scholar 

  11. J. E. Indacochea, J. L. Smith, K. R. Litko, E. J. Karell, and A. G. Raraz, Oxid. Met. 55, 1 (2001).

    Article  CAS  Google Scholar 

  12. E. J. Karell, R. D. Pierce, and T. P. Mulcahey, ANL/CMT/CP-89562 (1996).

  13. P. Y. Hou and J. Stringer, Oxid. Met. 33, 357 (1990).

    Article  CAS  Google Scholar 

  14. S. H. Cho, I. J. Cho, G. S. You, J. S. Yoon, and S. W. Park, Met. Mater. Int. 13, 303 (2007).

    Article  CAS  Google Scholar 

  15. S. H. Cho, J. M. Hur, C. S. Seo, and S. W. Park, J. Alloys Compd. 452, 11 (2008).

    Article  CAS  Google Scholar 

  16. H. Izuta and Y. Komura, J. Jpn. Inst. Met. 58, 1196 (1994).

    CAS  Google Scholar 

  17. Y. Harada, Jpn. Therm. Spraying Soc. 33, 128 (1996).

    CAS  Google Scholar 

  18. W. F. Smith, Structure and Properties of Engineering Alloys, 2 nd ed., p. 485, McGraw-Hill, New York (1994).

    Google Scholar 

  19. D. Caplan and M. Cohen, Corrosion 15, 141 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Haeng Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, SH., Hong, SS., Kang, DS. et al. Hot corrosion behavior of ni-base superalloys in a lithium molten salt. Met. Mater. Int. 15, 51–55 (2009). https://doi.org/10.1007/s12540-009-0051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-009-0051-6

Keywords

Navigation