Skip to main content

Advertisement

Log in

Identifying Lymph Node Metastasis-Related Factors in Breast Cancer Using Differential Modular and Mutational Structural Analysis

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Complex diseases are generally caused by disorders of biological networks and/or mutations in multiple genes. Comparisons of network topologies between different disease states can highlight key factors in their dynamic processes. Here, we propose a differential modular analysis approach that integrates protein–protein interactions with gene expression profiles for modular analysis, and introduces inter-modular edges and date hubs to identify the “core network module” that quantifies the significant phenotypic variation. Then, based on this core network module, key factors, including functional protein–protein interactions, pathways, and driver mutations, are predicted by the topological–functional connection score and structural modeling. We applied this approach to analyze the lymph node metastasis (LNM) process in breast cancer. The functional enrichment analysis showed that both inter-modular edges and date hubs play important roles in cancer metastasis and invasion, and in metastasis hallmarks. The structural mutation analysis suggested that the LNM of breast cancer may be the outcome of the dysfunction of rearranged during transfection (RET) proto-oncogene-related interactions and the non-canonical calcium signaling pathway via an allosteric mutation of RET. We believe that the proposed method can provide new insights into disease progression such as cancer metastasis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The code for this work is available at https://github.com/CSB-SUDA/DMA.

Abbreviations

LNM:

Lymph node metastasis

RET:

Rearranged during transfection

PPIN:

Protein–protein interaction network

EGFR:

Epidermal growth factor receptor

BRCA:

Breast cancer

DEGs:

Differentially expressed genes

aPCC:

Average Pearson’s correlation coefficient

CPL:

Characteristic path length

TFC:

Topological–functional connection

TCGA:

The Cancer Genome Atlas

KEGG:

Kyoto Encyclopedia of Genes and Genomes

GSEA:

Gene set enrichment analysis

COSMIC:

Catalogue of Somatic Mutations in Cancer

PDB:

Protein Data Bank

PRISM:

Protein Interactions by Structural Matching

References

  1. Welch DR, Hurst DR (2019) Defining the hallmarks of metastasis. Can Res 79(12):3011–3027. https://doi.org/10.1158/0008-5472.CAN-19-0458

    Article  CAS  Google Scholar 

  2. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y (2020) Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 5(1):28. https://doi.org/10.1038/s41392-020-0134-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  4. Dihge L, Vallon-Christersson J, Hegardt C, Saal LH, Hakkinen J, Larsson C, Ehinger A, Loman N, Malmberg M, Bendahl PO, Borg A, Staaf J, Ryden L (2019) Prediction of lymph node metastasis in breast cancer by gene expression and clinicopathological models: development and validation within a population-based cohort. Clin Cancer Res 25(21):6368–6381. https://doi.org/10.1158/1078-0432.CCR-19-0075

    Article  CAS  PubMed  Google Scholar 

  5. Angus L, Smid M, Wilting SM, van Riet J, Van Hoeck A, Nguyen L, Nik-Zainal S, Steenbruggen TG, Tjan-Heijnen VCG, Labots M, van Riel J, Bloemendal HJ, Steeghs N, Lolkema MP, Voest EE, van de Werken HJG, Jager A, Cuppen E, Sleijfer S, Martens JWM (2019) The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat Genet 51(10):1450–1458. https://doi.org/10.1038/s41588-019-0507-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM, Ali SS, Hassan FU, Heng W, Wei DQ (2020) An integrated systems biology and network-based approaches to identify novel biomarkers in breast cancer cell lines using gene expression data. Interdiscip Sci 12(2):155–168. https://doi.org/10.1007/s12539-020-00360-0

    Article  CAS  PubMed  Google Scholar 

  7. Hozhabri H, GhasemiDehkohneh RS, Razavi SM, Razavi SM, Salarian F, Rasouli A, Azami J, GhasemiShiran M, Kardan Z, Farrokhzad N, MikaeiliNamini A, Salari A (2022) Comparative analysis of protein-protein interaction networks in metastatic breast cancer. PLoS ONE 17(1):e0260584. https://doi.org/10.1371/journal.pone.0260584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu C, Ma YF, Zhao J, Nussinov R, Zhang YC, Cheng FX, Zhang ZK (2020) Computational network biology: data, models, and applications. Phys Rep 846:1–66. https://doi.org/10.1016/j.physrep.2019.12.004

    Article  Google Scholar 

  9. Yan WY, Liu XY, Wang YB, Han SQ, Wang F, Liu X, Xiao F, Hu G (2020) Identifying drug targets in pancreatic ductal adenocarcinoma through machine learning, analyzing biomolecular networks, and structural modeling. Front Pharmacol. https://doi.org/10.3389/Fphar.2020.00534

    Article  PubMed  PubMed Central  Google Scholar 

  10. Basha O, Argov CM, Artzy R, Zoabi Y, Hekselman I, Alfandari L, Chalifa-Caspi V, Yeger-Lotem E (2020) Differential network analysis of multiple human tissue interactomes highlights tissue-selective processes and genetic disorder genes. Bioinformatics 36(9):2821–2828. https://doi.org/10.1093/bioinformatics/btaa034

    Article  CAS  PubMed  Google Scholar 

  11. Lichtblau Y, Zimmermann K, Haldemann B, Lenze D, Hummel M, Leser U (2017) Comparative assessment of differential network analysis methods. Brief Bioinform 18(5):837–850. https://doi.org/10.1093/bib/bbw061

    Article  CAS  PubMed  Google Scholar 

  12. Goenawan IH, Bryan K, Lynn DJ (2016) DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics 32(17):2713–2715. https://doi.org/10.1093/bioinformatics/btw187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gulfidan G, Turanli B, Beklen H, Sinha R, Arga KY (2020) Pan-cancer mapping of differential protein-protein interactions. Sci Rep 10(1):3272. https://doi.org/10.1038/s41598-020-60127-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savino A, Provero P, Poli V (2020) Differential co-expression analyses allow the identification of critical signalling pathways altered during tumour transformation and progression. Int J Mol Sci. https://doi.org/10.3390/ijms21249461

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu B, Chang X, Liu X (2019) Predicting functional modules of liver cancer based on differential network analysis. Interdiscip Sci 11(4):636–644. https://doi.org/10.1007/s12539-018-0314-3

    Article  CAS  PubMed  Google Scholar 

  16. Nussinov R, Jang H, Nir G, Tsai CJ, Cheng F (2022) Open structural data in precision medicine. Annu Rev Biomed Data Sci 5:95–117. https://doi.org/10.1146/annurev-biodatasci-122220-012951

    Article  PubMed  Google Scholar 

  17. Gorostiola Gonzalez M, Janssen APA, IJzerman AP, Heitman LH, van Westen GJP (2022) Oncological drug discovery: AI meets structure-based computational research. Drug Discover Today 27(6):1661–1670. https://doi.org/10.1016/j.drudis.2022.03.005

    Article  CAS  Google Scholar 

  18. Robichaux JP, Le X, Vijayan RSK, Hicks JK, Heeke S, Elamin YY, Lin HY, Udagawa H, Skoulidis F, Tran H, Varghese S, He J, Zhang F, Nilsson MB, Hu L, Poteete A, Rinsurongkawong W, Zhang X, Ren C, Liu X, Hong L, Zhang J, Diao L, Madison R, Schrock AB, Saam J, Raymond V, Fang B, Wang J, Ha MJ, Cross JB, Gray JE, Heymach JV (2021) Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature 597(7878):732–737. https://doi.org/10.1038/s41586-021-03898-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu H, Chen Z, Wu Y, Zhang H, Liu Q (2022) Integrating protein-protein interaction networks and somatic mutation data to detect driver modules in pan-cancer. Interdiscip Sci 14(1):151–167. https://doi.org/10.1007/s12539-021-00475-y

    Article  CAS  PubMed  Google Scholar 

  20. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5(12):e1000601. https://doi.org/10.1371/journal.pcbi.1000601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engin HB, Guney E, Keskin O, Oliva B, Gursoy A (2013) Integrating structure to protein-protein interaction networks that drive metastasis to brain and lung in breast cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0081035

    Article  PubMed  PubMed Central  Google Scholar 

  22. AcunerOzbabacan SE, Gursoy A, Nussinov R, Keskin O (2014) The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Comput Biol 10(2):e1003470. https://doi.org/10.1371/journal.pcbi.1003470

    Article  CAS  Google Scholar 

  23. Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27(2):199–204. https://doi.org/10.1038/nbt.1522

    Article  CAS  PubMed  Google Scholar 

  24. Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140. https://doi.org/10.1038/msb4100180

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93. https://doi.org/10.1038/nature02555

    Article  CAS  PubMed  Google Scholar 

  26. Wang F, Han S, Yang J, Yan W, Hu G (2021) Knowledge-guided “Community Network” analysis reveals the functional modules and candidate targets in non-small-cell lung cancer. Cells. https://doi.org/10.3390/cells10020402

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28(11):1747–1756. https://doi.org/10.1101/gr.239244.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic acids Res 33(Database issue):D433–D437. https://doi.org/10.1093/nar/gki005

    Article  CAS  Google Scholar 

  29. Hotelling H (1953) New light on the correlation coefficient and its transforms. J R Stat Soc B 15(2):193–232. https://doi.org/10.1111/j.2517-6161.1953.tb00135.x

    Article  Google Scholar 

  30. Subelj L, Bajec M (2011) Unfolding communities in large complex networks: combining defensive and offensive label propagation for core extraction. Phys Rev 83(3–2):036103. https://doi.org/10.1103/PhysRevE.83.036103

    Article  CAS  Google Scholar 

  31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu G, Yan W, Zhou J, Shen B (2014) Residue interaction network analysis of Dronpa and a DNA clamp. J Theor Biol 348:55–64. https://doi.org/10.1016/j.jtbi.2014.01.023

    Article  CAS  PubMed  Google Scholar 

  33. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34. https://doi.org/10.1093/nar/27.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P (2015) The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1(6):417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  Google Scholar 

  37. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48(D1):D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  38. Forbes S, Clements J, Dawson E, Bamford S, Webb T, Dogan A, Flanagan A, Teague J, Wooster R, Futreal PA, Stratton MR (2006) Cosmic 2005. Br J Cancer 94(2):318–322. https://doi.org/10.1038/sj.bjc.6602928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baspinar A, Cukuroglu E, Nussinov R, Keskin O, Gursoy A (2014) PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res 42(Web Server issue):W285–W289. https://doi.org/10.1093/nar/gku397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuncbag N, Gursoy A, Nussinov R, Keskin O (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6(9):1341–1354. https://doi.org/10.1038/nprot.2011.367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: flexible induced-fit backbone refinement in molecular docking. Proteins 78(6):1503–1519. https://doi.org/10.1002/prot.22668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guarnera E, Tan ZW, Zheng Z, Berezovsky IN (2017) AlloSigMA: allosteric signaling and mutation analysis server. Bioinformatics 33(24):3996–3998. https://doi.org/10.1093/bioinformatics/btx430

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Bi J, Lin Y (2019) ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38(1):173. https://doi.org/10.1186/s13046-019-1156-5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pecar G, Liu S, Hooda J, Atkinson JM, Oesterreich S, Lee AV (2023) RET signaling in breast cancer therapeutic resistance and metastasis. Breast cancer Res 25(1):26. https://doi.org/10.1186/s13058-023-01622-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng M, Ball-Kell SM, Tyner AL (2015) Protein tyrosine kinase 6 promotes ERBB2-induced mammary gland tumorigenesis in the mouse. Cell Death Dis 6(8):e1848. https://doi.org/10.1038/cddis.2015.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, Donovan M, Cordon-Cardo C, Beug H, Grunert S (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116(6):1561–1570. https://doi.org/10.1172/JCI24652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue C, Liang F, Mahmood R, Vuolo M, Wyckoff J, Qian H, Tsai KL, Kim M, Locker J, Zhang ZY, Segall JE (2006) ErbB3-dependent motility and intravasation in breast cancer metastasis. Can Res 66(3):1418–1426. https://doi.org/10.1158/0008-5472.CAN-05-0550

    Article  CAS  Google Scholar 

  48. Jitariu AA, Raica M, Cimpean AM, Suciu SC (2018) The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast. Crit Rev Oncol Hematol 131:46–52. https://doi.org/10.1016/j.critrevonc.2018.08.002

    Article  PubMed  Google Scholar 

  49. Zhou HB, Lei PJ, Padera TP (2021) Progression of metastasis through lymphatic system. Cells. https://doi.org/10.3390/Cells10030627

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059

    Article  CAS  PubMed  Google Scholar 

  51. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874. https://doi.org/10.1038/ng2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Konig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E (2019) Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1007485

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ghauri MA, Raza A, Hayat U, Atif N, Iqbal HMN, Bilal M (2022) Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis. Biochim Biophys Acta Gen Subj 1866(5):130113. https://doi.org/10.1016/j.bbagen.2022.130113

    Article  CAS  PubMed  Google Scholar 

  54. Hanker AB, Brown BP, Meiler J, Marin A, Jayanthan HS, Ye D, Lin CC, Akamatsu H, Lee KM, Chatterjee S, Sudhan DR, Servetto A, Brewer MR, Koch JP, Sheehan JH, He J, Lalani AS, Arteaga CL (2021) Co-occurring gain-of-function mutations in HER2 and HER3 modulate HER2/HER3 activation, oncogenesis, and HER2 inhibitor sensitivity. Cancer Cell 39(8):1099–1114. https://doi.org/10.1016/j.ccell.2021.06.001. (e8)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Makena MR, Rao R (2020) Subtype specific targeting of calcium signaling in breast cancer. Cell Calcium 85:102109. https://doi.org/10.1016/j.ceca.2019.102109

    Article  CAS  PubMed  Google Scholar 

  56. Lee D, Hong JH (2021) Ca2+ signaling as the untact mode during signaling in metastatic breast cancer. Cancers. https://doi.org/10.3390/Cancers13061473

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y (2021) The root cause of drug resistance in HER2-positive breast cancer and the therapeutic approaches to overcoming the resistance. Pharmacol Therapeutics 218:107677. https://doi.org/10.1016/j.pharmthera.2020.107677

    Article  CAS  Google Scholar 

  58. Kennedy SP, Han JZR, Portman N, Nobis M, Hastings JF, Murphy KJ, Latham SL, Cadell AL, Miladinovic D, Marriott GR, O’Donnell YEI, Shearer RF, Williams JT, Munoz AG, Cox TR, Watkins DN, Saunders DN, Timpson P, Lim E, Kolch W, Croucher DR (2019) Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res 21(1):43. https://doi.org/10.1186/s13058-019-1127-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H (2022) Allostery: allosteric cancer drivers and innovative allosteric drugs. J Mol Biol. https://doi.org/10.1016/j.jmb.2022.167569

    Article  PubMed  PubMed Central  Google Scholar 

  60. Paratala BS, Chung JH, Williams CB, Yilmazel B, Petrosky W, Williams K, Schrock AB, Gay LM, Lee E, Dolfi SC, Pham K, Lin S, Yao M, Kulkarni A, DiClemente F, Liu C, Rodriguez-Rodriguez L, Ganesan S, Ross JS, Ali SM, Leyland-Jones B, Hirshfield KM (2018) RET rearrangements are actionable alterations in breast cancer. Nat Commun 9(1):4821. https://doi.org/10.1038/s41467-018-07341-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32271292, 31872723), a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, the China Postdoctoral Science Foundation (2016M590495), and the Jiangsu Planned Projects for Postdoctoral Research Funds (1601168C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Yan, Yujuan Zhang or Guang Hu.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, B., Huang, X. et al. Identifying Lymph Node Metastasis-Related Factors in Breast Cancer Using Differential Modular and Mutational Structural Analysis. Interdiscip Sci Comput Life Sci 15, 525–541 (2023). https://doi.org/10.1007/s12539-023-00568-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00568-w

Keywords

Navigation