Skip to main content
Log in

Insight into a Transcriptional Adaptor Zinc Finger Encoded by a Putative Protein in the White Spot Syndrome Virus Genome

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The transcriptional adaptor zinc (TAZ) fingers are a specialized class of zinc finger domains reported to exist only in eukaryotic transcriptional coactivator proteins. A putative protein within the shrimp white spot syndrome virus (WSSV) encodes for a TAZ domain, which is unique as no virus so far has been reported for the presence of this domain. Our study shows the viral TAZ domain to be similar to TAZ2 rather than TAZ1 domain of eukaryotic CREB-binding proteins and its paralog p300 proteins. Furthermore, as with eukaryotic TAZ2 domain which interacts and binds to several transcriptional factors including the p53 tumor suppressor protein, an in silico docking study of the WSSV-TAZ and the shrimp p53 transcriptional factor showed the two protein domains to be involved in a protein–protein interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lightner DV (1996) A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp. Special publication of the World Aquaculture Society, Baton Rouge

    Google Scholar 

  2. Vlak JM, Bonami JR, Flegel TW, Kou GH, Lightner DV, Lo CF, Loh PC, Walker PW (2005) Nimaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. Elsevier, Amsterdam, pp 187–192

    Google Scholar 

  3. van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M (2001) The white spot syndrome virus genome sequence. Virology 286:7–22

    Article  PubMed  CAS  Google Scholar 

  4. Yang F, He J, Lin X, Li Q, Pan D, Zhang X (2001) Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75:11811–11820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. He F, Kwang J (2008) Identification and characterization of a new E3 ubiquitin ligase in white spot syndrome virus involved in virus latency. Virol J 5:151–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. He F, Fenner BJ, Godwin AK, Kwang J (2006) White spot syndrome virus open reading frame 222 encodes a viral E3 ligase and mediates degradation of a host tumor suppressor via ubiquitination. J Virol 80:3884–3892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. He F, Syed SM, Hameed AS, Kwang J (2009) Viral ubiquitin ligase WSSV222 is required for efficient white spot syndrome virus replication in shrimp. J Gen Virol 90:1483–1490

    Article  PubMed  CAS  Google Scholar 

  8. Jeena K, Prasad PK, Pathan MK, Babu GP (2012) Expression profiling of WSSV ORF 199 and shrimp ubiquitin conjugating enzyme in WSSV Infected Penaeus monodon. Asian Aust J Anim Sci 25:1184–1189

    Article  CAS  Google Scholar 

  9. Wang Z, Chua HK, Gusti AA, He F, Fenner B, Manopo I, Wang H, Kwang J (2005) RING-H2 protein WSSV249 from white spot syndrome virus sequesters a shrimp ubiquitin-conjugating enzyme, PvUbc, for viral pathogenesis. J Virol 79:8764–8772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  11. Saurin AJ, Borden KLB, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci 21:208–214

    Article  PubMed  CAS  Google Scholar 

  12. Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mathews JM, Sunde M (2002) Zinc fingers-folds for many occasions. IUBMB Life 54:351–355

    Article  Google Scholar 

  14. Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcription regulation. J Biol Chem 276:13505–13508

    Article  PubMed  CAS  Google Scholar 

  15. Hardy RW, Wertz GW (2000) The cys3-his1 motif of the respiratory syncytial virus M2-1 protein is essential for protein function. J Virol 74:5880–5885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Modrof J, Becker S, Mühlberger E (2003) Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 77:3334–3338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lamberti C, Morrissey LC, Grossman SR, Androphy EJ (1990) Transcriptional activation by the papillomavirus E6 zinc finger oncoprotein. EMBO J 9:1907–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  20. Ponting CP, Schultz J, Milpetz F, Bork P (1999) SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res 27:229–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  24. Benkert P, Schwede T, Tosatto SCE (2009) QMEANclust: estimation of protein model quality by combining a composite scoring function with structural density information. BMC Struct Biol 9:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. DeLano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San Carlos. http://www.pymol.org. Accessed 22 July 2016

  28. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  29. De Guzman RN, Martinez-Yamout MA, Dyson HJ, Wright PE (2005) Structure and function of the CBP/p300 TAZ domains. In: Iuchi S, Kuldell N (eds) Zinc finger proteins: From atomic contact to cellular function. Kuwer Academic/Plenum Publishers, New York, pp 116–122

  30. Miller-Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E (2015) Characterization of the p300 Taz2–p53 TAD2 complex and comparison with the p300 Taz2–p53 TAD1 complex. Biochemistry 54:2001–2010

    Article  PubMed  CAS  Google Scholar 

  31. Das S, Boswell SA, Aaronson SA, Lee SW (2008) P53 promoter selection: choosing between life and death. Cell Cycle 7:154–157

    Article  PubMed  CAS  Google Scholar 

  32. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  PubMed  CAS  Google Scholar 

  33. Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y (2009) Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17:202–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Teufel DP, Freund SM, Bycroft M, Fersht AR (2007) Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. PNAS 104:7009–7014

    Article  PubMed  CAS  Google Scholar 

  35. Jenkins LM, Durell SR, Mazur SJ, Appella E (2012) P53N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis 33:1441–1449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Miller M, Dauter Z, Cherry S, Tropea JE, Wlodawer A (2009) Structure of the Taz2 domain of p300: insights into ligand binding. Acta Crystallogr D65:1301–1306

    Google Scholar 

  37. Liu WJ, Chang YS, Wang CH, Kou GH, Lo CF (2005) Microarray and RT-PCR screening for white spot syndrome virus immediate-early genes in cycloheximide-treated shrimp. Virology 334:327–341

    Article  PubMed  CAS  Google Scholar 

  38. Marks H, Vorst O, van Houwelingen AM, van Hulten MC, Vlak JM (2005) Gene-expression profiling of white spot syndrome virus in vivo. J Gen Virol 86:2081–2100

    Article  PubMed  CAS  Google Scholar 

  39. Li F, Li M, Ke W, Ji Y, Bian X, Yan X (2009) Identification of the immediate-early genes of white spot syndrome virus. Virology 385:267–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The funding support by the Dept. of Biotechnology, Bioinformatics Centre, Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malathi Shekar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekar, M., Venugopal, M.N. Insight into a Transcriptional Adaptor Zinc Finger Encoded by a Putative Protein in the White Spot Syndrome Virus Genome. Interdiscip Sci Comput Life Sci 11, 145–151 (2019). https://doi.org/10.1007/s12539-017-0268-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-017-0268-x

Keywords

Navigation