Skip to main content

Advertisement

Log in

Molecular modeling of abc transporter system — permease proteins from Microcoleus chthonoplastes PCC 7420 for effective binding against secreted aspartyl proteinases in Candida albicans — A therapeutic intervention

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Secreted aspartyl proteinases (SAP) are the key virulence factors that play a central role in the pathogenesis of Candida albicans and always are the best target for designing potent antifungal agents. Cyanobacteria have already been recognized to provide chemical and pharmacological novelty and diversity over conventional sources of drugs for combating major diseases ranging from AIDS to cancer. In this study, the two ABC transporter systems — permease proteins from Microcoleus chthonoplastes PCC 7420 were modeled and the protein-protein interaction assessment of the modeled proteins with selective secreted aspartyl proteinases of Candida albicans was attempted. The modeled proteins were assigned PMDB IDs PM0077423 and PM0077424. The secreted aspartyl protease 5 of Candida albicans showed effective interaction with ABC transporter permease protein 2 of Microcoleus chthonoplastes PCC 7420. Hydrophobic interactions were found between Tyr, Phe and Pro in chain A and Pro and Tyr in chain B. Our results of the docked complexes clearly demonstrated the potentiality of permease proteins in arresting the virulence nature of SAP of Candida albicans effectively. This study is first of its kind in addressing the therapeutic intervention of virulence nature of Candida albicans by the cyanobacterial system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABC:

ATP binding cassettes

SAP:

secreted aspartyl proteinases

PMDB:

protein modelling database

NRPS:

non-ribosomal peptide synthase

PKS:

polyketide synthetase

References

  1. Abad-Zapatero, C., Goldman, R., Muchmore, S.W., Hutchins, C., Stewart, K.W., Navaza, J., Payne, C.D., Ray, T.L. 1996. Structure of a secreted aspartic protease from C. albicans complexed with a potent inhibitor: implications for the design of antifungal agents. Protein Sci 5, 640–652.

    Article  CAS  PubMed  Google Scholar 

  2. Bein, M., Schaller, M., Kortig, H.C. 2002. The secreted aspartic proteinases as a new target in the therapy of candidiasis. Curr Drug Targets 3, 51–57.

    Article  Google Scholar 

  3. Benkert, P., Biasini, M., Schwede, T. 2011. Towards the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350.

    Article  CAS  PubMed  Google Scholar 

  4. Bradford, J.R., Westhead, D.R. 2005. Improved prediction of protein-protein binding sites using a support vector machines approach. Bioinformatics 21, 1487–1494.

    Article  CAS  PubMed  Google Scholar 

  5. Bryson, K., McGuffin, L.J., Marsden, R.L., Ward, J.J., Sodhi, J.S., Jones, D.T. 2005. Protein structure prediction servers at University College London. Nucl Acid Res 33, W36–W38.

    Article  CAS  Google Scholar 

  6. Capobianco, J.O., Lerner, C.G., Goldman, R.C. 1992. Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase. Anal Biochem 204, 96–102.

    Article  CAS  PubMed  Google Scholar 

  7. Ceroni, A., Passerini, A., Vullo, A., Frasconi, P. 2006. DISULFIND: A disulfide bonding state and cysteine connectivity prediction server. Nucl Acid Res 34, W177–W181.

    Article  CAS  Google Scholar 

  8. Christiansen, G., Dittmann, E., Ordorika, L.V., Rippka, R., Herdman, M., Börner, T. 2001. Nonribosomal peptide synthetase genes occur in most cyanobacterial genera as evidenced by their distribution in axenic strains of the PCC. Arch Microbiol 176, 452–458.

    Article  CAS  PubMed  Google Scholar 

  9. De Viragh, P.A., Sanglard, D., Togni, G., Falchetto, R., Monod, M. 1993. Cloning and sequencing of two Candida parapsilosis genes encoding acid proteases. J Gen Microbiol 139, 335–342.

    Article  PubMed  Google Scholar 

  10. Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., Liang, J. 2006. CASTp: Computed atas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucl Acid Res 34, W116–W118.

    Article  CAS  Google Scholar 

  11. Edmond, M.B., Wallace, S.E, McClish, D.K., Pfaller, M.A., Jones, R.N., Wenzel, R.P. 1999. Nosocomial bloodstream infections in United States hospitals: A three-year analysis. Clin Infect Dis 29, 239–244.

    Article  CAS  PubMed  Google Scholar 

  12. Eswar, N., Marti-Renom, M.A., Webb, B., Madhusudhan, M., Eramian, D., Shen, M., Pieper, U., Sali, A. 2006. Comparative protein structure modeling with MODELLER. In: Current Protocols in Bioinformatics, John Wiley & Sons, Inc., Hoboken, Supplement 15, 5.6.1–5.6.30.

    Google Scholar 

  13. Fraczkiewicz, R., Braun, W. 1998. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comp Chem 19, 319–333.

    Article  CAS  Google Scholar 

  14. Garcia-Pichel, F., Prufert-Bebout, L., Muyzer, G. 1996. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62, 3284–3291.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A. 2005. Protein identification and analysis tools on the ExPASy Server. In: Walker, J.N. (Ed.), The Proteomics Protocols Handbook, Humana Press, Totowa, 571–607.

    Chapter  Google Scholar 

  16. Guex, N., Peitsch, M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  17. Hirokawa, T., Boon-Chieng, S., Mitaku, S. 1998. SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.

    Article  CAS  PubMed  Google Scholar 

  18. Kuntal, B., Aparoy, P., Reddanna, P. 2010. EasyModeller: A graphical interface to MODELLER. BMC Res Notes 3, 226.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Laskowski, R.A., Watson, J.D., Thornton, J.M. 2005. ProFunc: A server for predicting protein function from 3D structure. Nucl Acid Res 33, W89–W93.

    Article  CAS  Google Scholar 

  20. Laurie, A.T., Jackson, R.M. 2005. Q-SiteFinder: An energy-based method for the prediction of proteinligand binding sites. Bioinformatics 21, 1908–1916.

    Article  CAS  PubMed  Google Scholar 

  21. Maiti, R., Gary, H., Domselaar, V., Zhang, H., Wishart, D.S. 2004. SuperPose: A simple server for sophisticated structural superposition. Nucl Acid Res 32, W590–W594.

    Article  CAS  Google Scholar 

  22. Marsden, R.L., McGuffin, L.J., Jones, D.T. 2002. Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Sci 11, 2814–2824.

    Article  CAS  PubMed  Google Scholar 

  23. Monod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., Jousson, O. 2002. Secreted proteases from pathogenic fungi. Int J Med Microbiol 292, 405–419.

    Article  CAS  PubMed  Google Scholar 

  24. Monod, M., Hube, B., Hess, D., Sanglard, D. 1998. Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144, 2731–2737.

    Article  CAS  PubMed  Google Scholar 

  25. Monod, M., Togni, G., Hube, B., Sanglard, D. 1994. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 13, 357–368.

    Article  CAS  PubMed  Google Scholar 

  26. Naglik, J.R., Challacombe, S.J., Hube, B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol 67, 400–428.

    Article  CAS  Google Scholar 

  27. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. 2004. UCSF Chimera — a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  28. Pettit, K., Bare, E., Tsai, A., Bowie, J.U. 2007. Hot-Patch: A statistical approach to finding biologically relevant features on protein surfaces. J Mol Biol 369, 863–879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pfaller, M.A., Jones, R.N., Messer, S.A., Edmond, M.B., Wenzel, R.P. 1998. National surveillance of nosocomial blood stream infection due to Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE program. Diagn Microbiol Infect Dis 31, 327–332.

    Article  CAS  PubMed  Google Scholar 

  30. Ruping, M.J., Vehreschild, J.J., Cornely, O.A. 2008. Patients at high risk of invasive fungal infections: When and how to treat? Drugs 68, 1941–1962.

    Article  PubMed  Google Scholar 

  31. Salome, L.L., Berenice, P.O., Consuelo, B.M., Cesar, C.C., Hugo, H.C., Lourdes, V.T. 2007. The proteolytic system of Candida dubliniensis. Amer J Infect Dis 3, 76–83.

    Article  Google Scholar 

  32. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., Wolfson, H.F. 2005. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucl Acid Res 33, W363–W367.

    Article  CAS  Google Scholar 

  33. Scholz, B., Liebezeit, G. 2006. Chemical screening for bioactive substances in culture media of microalgae and cyanobacteria from marine and brackish water habitats: First results. Pharmaceut Biol 44, 544–549.

    Article  CAS  Google Scholar 

  34. Sobel, J.D. 1988. Pathogenesis and epidemiology of vulvovaginal candidiasis. Ann NY Acad Sci 544, 547–557.

    Article  CAS  PubMed  Google Scholar 

  35. Sobel, J.D. 1992. Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis 14, S148–S153.

    Article  PubMed  Google Scholar 

  36. Söding, J., Biegert, A., Lupas, A.N. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucl Acid Res 33, W244–W248.

    Article  Google Scholar 

  37. Stewart, K.W., Abad-Zapatero, C. 2001. Candida proteases and their inhibition: Prospects for antifungal therapy. Curr Med Chem 8, 941–948.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart, K.W., Goldman, R.C., Abad-Zapatero, C. 1999. The secreted proteinases from Candida: Challenges for structure-aided drug design. In: Dunn, B.N. (Ed.), Proteases of Infectious Agents, Academic Press, Inc., San Diego, 117-138.

  39. Tina, K.G., Bhadra, R., Srinivasan, N. 2007. PIC: Protein interactions calculator. Nucl Acid Res 35, W473–W476.

    Article  CAS  Google Scholar 

  40. Vriend, G. 1990. WHAT IF: A molecular modeling and drug design program. J Mol Graph 8, 52–56.

    Article  CAS  PubMed  Google Scholar 

  41. Zaugg, C., Borg-von Zepelin, M., Reichard, D., Sanglard, D., Monod, M. 2001. Secreted aspartic proteinase family of Candida tropicalis. Infect Immun 69, 405–412.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangatharan Muralitharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manivannan, P., Muralitharan, G. Molecular modeling of abc transporter system — permease proteins from Microcoleus chthonoplastes PCC 7420 for effective binding against secreted aspartyl proteinases in Candida albicans — A therapeutic intervention. Interdiscip Sci Comput Life Sci 6, 63–70 (2014). https://doi.org/10.1007/s12539-014-0189-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-014-0189-x

Key words

Navigation