Skip to main content
Log in

Predicting Km values of beta-glucosidases using cellobiose as substrate

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The Michaelis-Menten constant Km is a very important parameter to relate enzyme with its substrate in enzymatic reaction. Although Km can be experimentally determined, the Km values are not easily available in literature. With rapid increase of newly designed enzymes, we face the shortage of parameters related to enzymatic reactions. The beta-glucosidase is a crucial enzyme for cellulose hydrolysis and cellobiose is one of its substrates. In this study, we attempt to develop models to predict Km with cellobiose as substrates using information about primary structure of beta-glucosidase. The results show that the 20-1 feedforward backpropagation neural network using the amino-acid distribution probability as predictor works best for prediction of Km values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berrin, J.G., Czjzek, M., Kroon, P.A., McLauchlan, W.R., Puigserver, A., Williamson, G., Juge, N. 2003. Substrate (aglycone) specificity of human cytosolic beta-glucosidase. Biochem J 373, 41–48.

    Article  PubMed  CAS  Google Scholar 

  2. Burlingame, A.L., Carr, S.A. 1996. Mass Spectrometry in the Biological Sciences. Humana Press, Totowa.

    Book  Google Scholar 

  3. Cai, Y., He, J., Li, X., Feng, K., Lu, L., Feng, K., Kong, X., Lu, W. 2010. Predicting protein subcellular locations with feature selection and analysis. Protein Pept Lett 17, 464–472.

    Article  PubMed  CAS  Google Scholar 

  4. Chou, P.Y., Fasman, G.D. 1978. Prediction of secondary structure of proteins from amino acid sequence. Adv Enzymol Relat Subj Biochem 47, 45–148.

    CAS  Google Scholar 

  5. Cooper, G.M. 2004. The cell: A Molecular Approach. ASM Press, Washington DC.

    Google Scholar 

  6. Darby, N.J., Creighton, T.E. 1993. Dissecting the disulphide-coupled folding pathway of bovine pancreatic trypsin inhibitor. Forming the first disulphide bonds in analogues of the reduced protein. J Mol Biol 232, 873–896.

    Article  PubMed  CAS  Google Scholar 

  7. Demuth, H., Beale, M. 2001. Neural network toolbox for use with MatLab. User’s guide, Version 4.

  8. Desriani, F.S., Sode, K. 2010. Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Biotechnol Lett 32, 855–859.

    Article  PubMed  CAS  Google Scholar 

  9. Dill, K.A. 1985. Theory for the folding and stability of globular proteins. Biochemistry 24, 1501–1509.

    Article  PubMed  CAS  Google Scholar 

  10. Dwyer, D.S. 2005. Electronic properties of amino acid side chains: Quantum mechanics calculation of substituent effects. BMC Chem Biol 5, 2.

    Article  PubMed  Google Scholar 

  11. Feller, W. 1968. An Introduction to Probability Theory and Its Applications. 3rd Edition, Vol. I. Wiley, New York.

    Google Scholar 

  12. Jeng, W.Y., Wang, N.C., Lin, M.H., Lin, C.T., Liaw, Y.C., Chang, W.J., Liu, C.I., Liang, P.H., Wang, A.H.J. 2011. Structural and functional analysis of three beta-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struc Biol 173, 46–56.

    Article  CAS  Google Scholar 

  13. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M. 2008. AAindex: Amino acid index database, progress report 2008. Nucleic Acids Res 36, D202–D205.

    Article  PubMed  CAS  Google Scholar 

  14. Kyte, J., Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.

    Article  PubMed  CAS  Google Scholar 

  15. MathWorks Inc. 1984–2001. MatLab — The Language of Technical Computing (version 6.1.0.450, release 12.1).

  16. Scheer, M., Grote, A., Chang, A., Schomburg, I., Munaretto, C., Rother, M., Söhngen, C., Stelzer, M., Thiele, J., Schomburg, D. 2011. BRENDA, the enzyme information system in 2011. Nucleic Acids Res 39(Database issue), D670–D676.

    Article  PubMed  Google Scholar 

  17. Shen, J., Agblevor, F.A. 2011. Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioprocess Biosyst Eng 34, 33–43.

    Article  PubMed  CAS  Google Scholar 

  18. The UniProt Consortium. 2010. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res 38, D142–D148.

    Article  Google Scholar 

  19. Trinquier, G., Sanejouand, Y.H., Hausman, R.E. 1998. Which effective property of amino acids is best preserved by the genetic code? Protein Eng 11, 153–169.

    Article  PubMed  CAS  Google Scholar 

  20. Tsukada, T., Igarashi, K., Fushinobu, S., Samejima, M. 2008. Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium. Biotechnol Bioeng 15, 1295–1302.

    Article  Google Scholar 

  21. Wu, G., Yan, S. 2006. Mutation trend of hemagglutinin of influenza A virus: A review from computational mutation viewpoint. Acta Pharmacol Sin 27, 513–526.

    Article  PubMed  CAS  Google Scholar 

  22. Wu, G., Yan, S. 2008. Lecture Notes on Computational Mutation. Nova Science Publishers, New York.

    Google Scholar 

  23. Wu, G, Yan, S.M. 2002. Randomness in the primary structure of protein: Methods and implications. Mol Biol Today 3, 55–69.

    CAS  Google Scholar 

  24. Yan, S, Wu, G. 2010. Creation and application of computational mutation. J Guangxi Acad Sci 17, 145–150.

    Google Scholar 

  25. Zamyatin, A.A. 1972. Protein volume in solution. Prog Biophys Mol Biol 24, 107–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, SM., Shi, DQ., Nong, H. et al. Predicting Km values of beta-glucosidases using cellobiose as substrate. Interdiscip Sci Comput Life Sci 4, 46–53 (2012). https://doi.org/10.1007/s12539-012-0115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-012-0115-z

Key words

Navigation