Skip to main content
Log in

The solvation structures of cellulose microfibrils in ionic liquids

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The use of ionic liquids for non-derivatized cellulose dissolution promises an alternative method for the thermochemical pretreatment of biomass that may be more efficient and environmentally acceptable than more conventional techniques in aqueous solution. Here, we performed equilibrium MD simulations of a cellulose microfibril in the ionic liquid 1-butyl-3-methylimidazolium chloride (BmimCl) and compared the solute structure and the solute-solvent interactions at the interface with those from corresponding simulations in water. The results indicate a higher occurrence of solvent-exposed orientations of cellulose surface hydroxymethyl groups in BmimCl than in water. Moreover, spatial and radial distribution functions indicate that hydrophilic surfaces are a preferred site of interaction between cellulose and the ionic liquid. In particular, hydroxymethyl groups on the hydrophilic fiber surface adopt a different conformation from their counterparts oriented towards the fiber’s core. Furthermore, the glucose units with these solvent-oriented hydroxymethyls are surrounded by the heterocyclic organic cation in a preferred parallel orientation, suggesting a direct and distinct interaction scheme between cellulose and BmimCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R. 1984. Molecular dynamics with coupling to an external bath. J Chem Phys 81, 3684–3690.

    Article  CAS  Google Scholar 

  2. Bergenstrahle, M., Berglund, L., Mazeau, K. 2007. Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J of Phys Chem B 111, 9138–9145.

    Article  Google Scholar 

  3. Bussi, G., Donadio, D., Parrinello, M. 2007. Canonical sampling through velocity rescaling. J Chem Phys 126, 014101.

    Article  PubMed  Google Scholar 

  4. Cuissinat, C., Navard, P., Heinze, T. 2008. Swelling and dissolution of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohyd Polym 72, 590–596.

    Article  CAS  Google Scholar 

  5. Darden, T., York, D., Pedersen, L. 1993. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J Chem Phys 98, 10089–10092.

    Article  CAS  Google Scholar 

  6. El Seoud, O., Koschella, A., Fidale, L., Dorn, S., Heinze, T. 2007. Applications of ionic liquids in carbohydrate chemistry: A window of opportunities. Biomacromolecules 8, 2629–2647.

    Article  PubMed  Google Scholar 

  7. Erdmenger, T., Haensch, C., Hoogenboom, R., Schubert, U. 2007. Homogeneous tritylation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7, 440–445.

    Article  PubMed  CAS  Google Scholar 

  8. Fairley, P. 2011. Introduction: Next generation biofuels. Nature 474, S2–S5.

    Article  PubMed  CAS  Google Scholar 

  9. Fredlake, C., Crosthwaite, J., Hert, D., Aki, S., Brennecke, J. 2004. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49, 954–964.

    Article  CAS  Google Scholar 

  10. Frisch, M. 1998. GAUSSIAN 98 (Pittsburgh, PA).

  11. Fukaya, Y., Hayashi, K., Kim, S.S., Ohno, H. 2010. Design of Polar Ionic Liquids To Solubilize Cellulose without Heating. In: Liebert, T., Heinze, T., and Edgar, K. (eds) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, Volume 1033, ACS, pp 55–66.

  12. Geddes, C., Nieves, I., Ingram, L. 2011. Advances in ethanol production. Curr Opin Biotech 22, 312–319.

    Article  PubMed  CAS  Google Scholar 

  13. Gericke, M., Schlufter, K., Liebert, T., Heinze, T., Budtova, T. 2009. Rheological properties of cellulose/ ionic liquid solutions: From dilute to concentrated states. Biomacromolecules 10, 1188–1194.

    Article  PubMed  CAS  Google Scholar 

  14. Graenacher, C. 1934. U.S. Patent 1,946,176

  15. Gross, A., Chu, J.-W. 2010. On the molecular origins of biomass recalcitrance: The interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114, 13333–13341.

    Article  PubMed  CAS  Google Scholar 

  16. Heinze, T., Liebert, T. 2001. Unconventional methods in cellulose functionalization. Prog Polym Sci 26, 1689–1762.

    Article  CAS  Google Scholar 

  17. Heinze, T., Schwikal, K., Barthel, S. 2005. Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5, 520–525.

    Article  PubMed  CAS  Google Scholar 

  18. Hess, B., Bekker, H., Berendsen, H., Fraaije, J. 1997. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18, 1463–1472.

    Article  CAS  Google Scholar 

  19. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. 2008. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4, 435–447.

    Article  CAS  Google Scholar 

  20. Himmel, M., Ding, S.-Y., Johnson, D., Adney, W., Nimlos, M., Brady, J., Foust, T. 2007. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315, 804–807.

    Article  PubMed  CAS  Google Scholar 

  21. Huddleston, J., Visser, A., Reichert, M., Willauer, H., Broker, G., Rogers, R. 2001. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3, 156–164.

    Article  CAS  Google Scholar 

  22. Inamura, Y., Yamamuro, O., Hayashi, S., Hamaguchi, H. 2006. Dynamics structure of a room-temperature ionic liquid bmimCl. Physica B: Condensed Matter 385-386, 732–734.

    Article  CAS  Google Scholar 

  23. Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R., Klein, M. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926–935.

    Article  CAS  Google Scholar 

  24. Kirschner, K., Yongye, A., Tschampel, S., Gonzalez-Outeirino, J., Daniels, C., Foley, L., Woods, R. 2008. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J Comput Chem 29, 622–655.

    Article  PubMed  CAS  Google Scholar 

  25. Klein, H.C., Cheng, X., Smith, J.C., Shen, T. 2011. Transfer matrix approach to the hydrogen-bonding in cellulose I-alpha fibrils describes the recalcitrance to thermal deconstruction. J Chem Phys 135, 085106.

    Article  PubMed  Google Scholar 

  26. Kowsari, M.H., Alavi, S., Ashrafizaadeh, M., Najafi, B. 2008. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys 129, 224508.

    Article  PubMed  CAS  Google Scholar 

  27. Liebert, T. 2010. Cellulose solvents — remarkable history, bright future. In: Liebert, T., Heinze, T., and Edgar, K. (eds.) Cellulose Solvents: For Analysis, Shaping and Chemical Modification, Volume 1033, ACS, pp 3–54.

  28. Liu, Z., Huang, S., Wang, W. 2004. A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108, 12978–12989.

    Article  CAS  Google Scholar 

  29. Liu, H., Sale, K., Holmes, B., Simmons, B., Singh, S. 2010. Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114, 4293–4301.

    Article  PubMed  CAS  Google Scholar 

  30. Matthews, J., Bergenstrahle, M., Beckham, G., Himmel, M., Nimlos, M., Brady, J., Crowley, M. 2011. High-temperature behavior of cellulose I. J Phys Chem B 115, 2155–2166.

    Article  PubMed  CAS  Google Scholar 

  31. Matthews, J., Skopec, C., Mason, P., Zuccato, P., Torget, R., Sugiyama, J., Himmel, M., Brady, J. 2006. Computer simulation studies of microcrystalline cellulose I-beta. Carbohyd Res 341, 138–152.

    Article  CAS  Google Scholar 

  32. Mazeau, K. 2005. Structural micro-heterogeneities of crystalline ibeta-cellulose. Cellulose 12, 339–349.

    Article  CAS  Google Scholar 

  33. Mazza, M., Catana, D.-A., Vaca-Garcia, C., Cecutti, C. 2009. Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16, 207–215.

    Article  CAS  Google Scholar 

  34. Mosier, N. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96, 673–686.

    Article  CAS  Google Scholar 

  35. Murray, R. 2006. The analytical chemistry measurement cop on buzzwords. Anal Chem 78, 2080–2080.

    Article  Google Scholar 

  36. Nishiyama, Y., Langan, P., Chanzy, H. 2002. Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124, 9074–9082.

    Article  PubMed  CAS  Google Scholar 

  37. Novoselov, N., Sashina, E., Petrenko, V., Zaborsky, M. 2007. Study of dissolution of cellulose in ionic liquids by computer modeling. Fibre Chem 39, 153–158.

    Article  CAS  Google Scholar 

  38. Philipp, B., Lukanoff, B., Schleicher, H., Wagenknecht, W. 1986. Homogene umsetzung an cellulose in organischen loesemittelsystemen. Z Chem 26, 50–58.

    Article  CAS  Google Scholar 

  39. Ragauskas, A., Williams, C., Davison, B., Britovsek, G., Cairney, J., Eckert, C., Frederick, W., Hallett, J., Leak, D., Liotta, C., Mielenz, J., Murphy, R., Templer, R., Tschaplinski, T. 2006. The path forward for biofuels and biomaterials. Science 311, 484–489.

    Article  PubMed  CAS  Google Scholar 

  40. Remsing, R., Hernandez, G., Swatloski, R., Massefski, W., Rogers, R., Moyna, G. 2008. Solvation of carbohydrates in n,n′-dialkylimidazolium ionic liquids: A multinuclear NMR spectroscopy study. J Phys Chem B 112, 11071–11078.

    Article  PubMed  CAS  Google Scholar 

  41. Remsing, R., Swatloski, R., Rogers, R., Moyna, G. 2006. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12, 1271–1273.

    Article  Google Scholar 

  42. Rinaldi, R., Palkovits, R., Schueth, F. 2008. Depolymerization of cellulose using solid catalysts in ionic liquids13. Angew Chem Int Edit 47, 8047–8050.

    Article  CAS  Google Scholar 

  43. Rockwell, G., Grindley, B. 1998. Effect of solvation on the rotation of hydroxymethyl groups in carbohydrates. J Am Chem Soc 120, 10953–10963.

    Article  CAS  Google Scholar 

  44. Schubert, C. 2006. Can biofuels finally take center stage? Nature Biotechnol 24, 777–784.

    Article  CAS  Google Scholar 

  45. Sellin, M., Ondruschka, B., Stark, A. 2010. Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In: Liebert, T., Heinze, T., and Edgar, K. (eds.), Cellulose Solvents: For Analysis, Shaping and Chemical Modification, Volume 1033, (ACS), pp. 121–135.

  46. Swatloski, R. 2003. World Patent number 1,029,329

  47. Swatloski, R., Spear, S., Holbrey, J., Rogers, R. 2002. Dissolution of cellose with ionic liquids. J Am Chem Soc 124, 4974–4975.

    Article  PubMed  CAS  Google Scholar 

  48. Thibaudeau, C., Stenutz, R., Hertz, B., Klepach, T., Zhao, S., Wu, Q., Carmichael, I., Serianni, A. 2004. Correlated C-C and C-O bond conformations in saccharide hydroxymethyl groups: Parametrization and application of redundant 1H-1H, 13C-1H, and 13C-13C NMR J-couplings. J Am Chem Soc 126, 15668–15685.

    Article  PubMed  CAS  Google Scholar 

  49. Urahata, S.R., Ribeiro, M. 2005. Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122, 024511.

    Article  PubMed  Google Scholar 

  50. Vitz, J., Erdmenger, T., Haensch, C., Schubert, U. 2009. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11, 417–424.

    Article  CAS  Google Scholar 

  51. Wyman, C., Dale, B., Elander, R., Holtzapple, M., Ladisch, M., Lee, Y.Y. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technol 96, 1959–1966.

    Article  CAS  Google Scholar 

  52. Yamamuro, O., Minamimoto, Y., Inamura, Y., Hayashi, S., Hamaguchi, H. 2006. Heat capacity and glass transition of an ionic liquid 1-butyl-3-methylimidazolium chloride. Chem Phys Lett 423, 371–375.

    Article  CAS  Google Scholar 

  53. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., Fukuda, K. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of miscanthus sinensis to monosaccharides. Biosci Biotech Bioch 72, 805–810.

    Article  CAS  Google Scholar 

  54. Youngs, T., Holbrey, J., Deetlefs, M., Nieuwenhuyzen, M., Costa Gomes, M., Hardacre, C. 2006. A molecular dynamics study of glucose solvation in the ionic liquid 1,3-dimethylimidazolium chloride. ChemPhysChem 7, 2279–2281.

    Article  PubMed  CAS  Google Scholar 

  55. Youngs, T.G., Hardacre, C., Holbrey, J.D. 2007. Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: A simulation study. J Phys Chem B 111, 13765–13774.

    Article  PubMed  CAS  Google Scholar 

  56. Yui, T., Nishimura, S., Akiba, S., Hayashi, S. 2006. Swelling behavior of the cellulose Ibeta crystal models by molecular dynamics. Carbohyd Res 341, 2521–2530.

    Article  CAS  Google Scholar 

  57. Zhang, H., Wu, J., Zhang, J., He, J. 2005. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 38, 8272–8277.

    Article  CAS  Google Scholar 

  58. Zhao, H., Xia, S., and Ma, P. 2005. Use of ionic liquids as lsquogreenrsquo solvents for extractions. J Chem Technol Biot 80, 1089–1096.

    Article  CAS  Google Scholar 

  59. Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G. 2006. Dissolution of cellulose with ionic liquids and its application: A mini-review. Green Chem 8, 325–327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostofian, B., Smith, J.C. & Cheng, X. The solvation structures of cellulose microfibrils in ionic liquids. Interdiscip Sci Comput Life Sci 3, 308–320 (2011). https://doi.org/10.1007/s12539-011-0111-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0111-8

Key words

Navigation