Skip to main content
Log in

Screening natural products database for identification of potential antileishmanial chemotherapeutic agents

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Leishmaniasis is a parasitic infection caused by unicellular protozoan organism belonging to the family Trypanosomatidae. Among various forms of the disease, visceral leishmaniasis is the most lethal and caused by Leishmania infantum or Leishmania donovani. The redox metabolism of parasite requires a key enzyme, trypanothione reductase which is a validated drug target. In the past decade, it was observed that these protozoan parasites had developed resistance against many of available drugs. Importantly in the case of visceral leishmaniasis drug resistance is very high in the Indian subcontinent, a major endemic region of Leishmania donovani infection. In search for new drugs, we aim to identify potential natural product inhibitors of trypanothione reductase which can be further developed as anti-leishmanial drug. We have performed in silico virtual screening of a natural product data set of 800 diverse chemical entities. Leishmania infantum trypanothione reductase crystal structure (PDB ID: 2JK6) was used in the virtual screening process, docking studies to identify potential lead compounds. The compounds were sorted based upon their binding energy and the top 50 ranked protein-inhibitor complexes were clustered using AuPosSOM to ligand foot print the interactions. We report a few alkaloids and sterols for the first time, which could be potential trypanothione reductase inhibitors. The footprinting of protein-inhibitor interactions into clusters has also provided clues on various possible orientations that inhibitors can attain at the active site of Trypanothione reductase. Moreover, biological significance of the interactions has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocco, P., Colotti, G., Franceschini, S., Andrea, I. 2009. Molecular basis of antimony treatment in leishmaniasis. J Med Chem 52, 2603–2612.

    Article  PubMed  CAS  Google Scholar 

  2. Bond, C.S., Zhang, Y., Berriman, M., Cunningham, M.L., Fairlamb, A.H., Hunter, A.N. 1999. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structurebased discovery of new natural product inhibitors. Structure 7, 81–89.

    Article  PubMed  CAS  Google Scholar 

  3. Bouvier, G., Evrard-Todeschi, N., Girault, J.P., Bertho, G. 2010. Automatic clustering of docking poses in virtual screening process using self-organising map. Bioinformatics 26, 53–60.

    Article  PubMed  CAS  Google Scholar 

  4. Croft, S.L., Sundar, S., Fairlamb A.H. 2006. Drug resistance in leishmaniasis. Clin Microbiol Rev 19, 111–126.

    Article  PubMed  CAS  Google Scholar 

  5. Fairlamb, A.H., Blackburn, P., Ulrich, P., Chait, B.T., Cerami, A. 1985. Trypanothione: A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 227, 1485–1487.

    Article  PubMed  CAS  Google Scholar 

  6. Fairlamb, A.H., Cerami, A. 1992. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46, 695–729.

    Article  PubMed  CAS  Google Scholar 

  7. Holloway, G.A., Charman, W.N., Fairlamb, A.H., Brun, R., Kaiser, M., Kostewicz, E., Novello, P.M., Parisot, J.P., Richardson, J., Street, I.P., Watson, K.G., Baell J.B. 2009. Trypanothione reductase highthroughput screening campaign identifies novel classes of inhibitors with antiparasitic activity. Antimicrob Agents Chemother 53, 2824–2833.

    Article  PubMed  CAS  Google Scholar 

  8. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19, 1639–1662.

    Article  CAS  Google Scholar 

  9. Murray, H.W., Berman, J.D., Davies, C.R., Saravia, N.G. 2005. Advances in leishmaniasis. Lancet 366, 1561–1577.

    Article  PubMed  CAS  Google Scholar 

  10. Newman, D.J., Cragg, G.M. 2007. Natural poducts as sources of new drugs over the last 25 years. J Nat Prod 70, 461–477.

    Article  PubMed  CAS  Google Scholar 

  11. Orhan, I., Şener, B., Kaiser, M., Brun, R., Tasdemir, D. 2010. IInhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar Drugs 8, 47–58.

    Article  PubMed  CAS  Google Scholar 

  12. Perez-Pineiro, R., Burgos, A., Jones, D.C., Andrew, L.C., Rodriguez, H., Suarez, M., Fairlamb, A.H., Wishart, D.S. 2009. Development of a novel virtual screening cascade protocol to identify potential trypanothione reductase inhibitors. J Med Chem 52, 1670–1680.

    Article  PubMed  CAS  Google Scholar 

  13. Rivarola, H.W., Paglini-Oliva, P.A. 2002. Trypanosoma cruzi trypanothione reductase inhibitors: Phenothiazines and related compounds modify experimental Chagas’ disease evolution. Curr Drug Targets Cardiovasc Haematol Disord 2, 43–52.

    Article  PubMed  CAS  Google Scholar 

  14. Sanner, M.F. 1999. Python: A programming language for software integration and development. J Mol Graphics Mod 17, 57–61.

    CAS  Google Scholar 

  15. Shukla, A.K., Singh, B.K., Patra, S., Dubey, V.K. 2010. Rational approaches for drug designing against Leishmaniasis. Appl Biochem Biotechnol 160, 2208–2218.

    Article  PubMed  CAS  Google Scholar 

  16. Shukla, A.K., Patra, S., Dubey, V.K. 2011. Evaluation of selected antitumor agents as subversive substrate and potential inhibitor of trypanothione reductase: An alternative approach for chemotherapy of Leishmaniasis. Mol Cell Biochem, DOI: 10.1007/s11010-011-0762-0.

  17. Tovar, J., Cunningham, M.I., Smith, A.C., Croft, S.I., Fairlamb, A.H. 1998. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: Effect on parasite intracellular survival. Proc Natl Acad Sci USA 95, 5311–5316.

    Article  PubMed  CAS  Google Scholar 

  18. Venkatesan, S.K., Shukla, A.K., Dubey, V.K. 2010. Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum. J Comput Chem 31, 2463–2472.

    PubMed  CAS  Google Scholar 

  19. Vogt, A., Tamewitz, A., Skoko, J., Sikorski, R.P., Giuliano, K.A., Lazo, J.S. 2005. The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J Biol Chem 280, 19078–19086.

    Article  PubMed  CAS  Google Scholar 

  20. Wallace, A.C., Laskowski, R.A., Thornton, J.M. 1995. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Prot Eng 8, 127–134.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Bond, C.S., Bailey, S., Cunningham, M.L., Fairlamb, A.H., Hunter, W.N. 1996. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 Å resolution. Protein Sci 5, 52–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikash Kumar Dubey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, S.K., Saudagar, P., Shukla, A.K. et al. Screening natural products database for identification of potential antileishmanial chemotherapeutic agents. Interdiscip Sci Comput Life Sci 3, 217–231 (2011). https://doi.org/10.1007/s12539-011-0101-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0101-x

Key words

Navigation