Skip to main content

Advertisement

Log in

Computational approach towards promoter sequence comparison via TF mapping using a new distance measure

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

We propose a method for identifying transcription factor binding sites (TFBS) in the given promoter sequence and mapping the transcription factors (TFs). The proposed algorithm searches the +1 transcription start site (TSS) for eukaryotic and prokaryotic sequences individually. The algorithm was tested with sequences from both eukaryotes and prokaryotes for at least 9 experimentally verified and validated functional TFs in promoter sequences. The order and type of TF binding to the promoter of genes encoding central metabolic pathway (CMP) enzyme was tabulated. A new similarity measure was devised for scoring the similarity between a pair of promoter sequences based on the number and order of motifs. Further, these were grouped in clusters considering the scores between them. The distance between each of the clusters in individual pathway was calculated and a phylogenetic tree was developed. This method is further applied to other pathways such as lipid and amino acid biosynthesis to retrieve and compare experimentally verified and conserved TFBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baek, D., Davis, C., Ewing, B., Gordon, D., Green, P. 2007. Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Res 17, 145–155.

    Article  PubMed  CAS  Google Scholar 

  2. Blanco, E., Messeguer, X., Smith, T.F., Guigo, R. 2006. Transcription factor map alignment of promoter regions. PloS Computa Biol 2, 403–416.

    CAS  Google Scholar 

  3. Burke, S.A., Lo, S.L., Krzycki, J.A. 1998. Clustered genes encoding the methyltransferases of methanogenesis from monomethylamine. J Bacteriol 180, 3432–3440.

    PubMed  CAS  Google Scholar 

  4. Chrochemore, M., Lecroq, T. 1996. Pattern matching and text data compression algorithms. ACM Computing Surveys 28, 39–41.

    Article  Google Scholar 

  5. Down, T.A, Hubbard, T.J.P. 2004. What can we learn from non-coding regions of similarity between genomes. BMC Bioinformatics 5, 131–137.

    Article  PubMed  Google Scholar 

  6. Ficket, J.W., Hatzigeorgiou, A.G. 1997. Eukaryotic promoterrecognition. Genome Res 7, 861–878.

    Google Scholar 

  7. Gielly, L., Taberlet, P. 1994. The use of chloroplast DNA to resolve plant phylogenies: Non-coding versus rbcL sequences. Molecular Biology and Evolution 11, 769–777.

    PubMed  CAS  Google Scholar 

  8. Grimson, W.E.L., Huttenlocher, D.P. 1991. On the verification of hypothesized matches in model-based recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 1201–1213.

    Article  Google Scholar 

  9. Hooghe, B., Hulpiau, P., van Roy, F., de Blese, P. 2008. ConTra: A promoter alignment analysis tool for identification of transcription factor binding sites across species. Nucleic Acids Research 36, W128–W132.

    Article  PubMed  CAS  Google Scholar 

  10. Ko, L.J., Engel, J.D. 1993. DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol 13, 4011–4022.

    PubMed  CAS  Google Scholar 

  11. Lifton, R.P., Goldberg, M.L., Karp, R.W., Hogness, D.S. 1978. The organization of the histone genes in Drosophila melanogaster: Functional and evolutionary implications. Cold Spring Harb Symp Quant Biol 42, 1047–1051.

    PubMed  CAS  Google Scholar 

  12. Mandemakers, W., Morais, V.A., de Strooper, B. 2007. A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. Journal of Cell Science 120, 1707–1716.

    Article  PubMed  CAS  Google Scholar 

  13. Meera, A., Rangarajan, L., Bhat, S. 2009a. CMP promoter database: A systematic study on site-specific transcription factors in CMP genes. J Biochem Tech 1, 85–87.

    CAS  Google Scholar 

  14. Meera, A., Rangarajan, L., Bhat, S. 2009b. Computational approach towards finding evolutionary distance and gene order using promoter sequences of central metabolic pathway. Interdiscip Sci Comput Life Sci 1, 128–132.

    Article  CAS  Google Scholar 

  15. Morgan, J.G., Courtois, G., Fourel, G., Chodosh, L.A., Campbell, L., Evans, E., Crabtree, G.R. 1988. Sp1, a CAAT-binding factor, and the adenovirus major late promoter transcription factor interact with functional regions of the gamma-fibrinogen promoter. Mol Cell Biol 8, 2628–2637.

    PubMed  CAS  Google Scholar 

  16. Murai, K., Murakami, H., Nagata, S. 1998. Myeloidspecific transcriptional activation by murine myeloid zinc-finger protein 2. Biochemistry 95, 3461–3466.

    CAS  Google Scholar 

  17. Petryniak, B., Staudt, L.M., Postema, C.E., McCormack, W.T., Thompson, C.B. 1990. Characterization of chicken octamer-binding proteins demonstrates that POU domain-containing homeobox transcription factors have been highly conserved during vertebrate evolution. Proc Natl Acad Sci USA 87, 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  18. Rovescalli, A.C., Cinquanta, M., Ferrante, J., Kozak, C.A., Nirenberg, M. 2000. The mouse Nkx-1.2 homeobox gene: Alternative RNA splicing at canonical and noncanonical splice sites. Proc Natl Acad Sci USA 97, 1982–1987.

    Article  PubMed  CAS  Google Scholar 

  19. Saitou, N., Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

    PubMed  CAS  Google Scholar 

  20. Scholl, C., Bansal, D., Döhner, K., Eiwen, K., Brian, J.P., Huntly, B.H., Lee, F.G., Rücker, R.F., Schlenk, L.B., Döhner, H., Gilliland, D.G., Fröhling, S. 2007. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. J Clin Invest 117, 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  21. Suh, E., Chen, L., Taylor, J., Traber, P.G. 1994. A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 14, 7340–7351.

    PubMed  CAS  Google Scholar 

  22. Tiros, I., Berman, J., Barkai, N. 2007. The pattern and evolution of yeast promoter bend ability. Trends in Genetics 23, 318–321.

    Article  Google Scholar 

  23. Tohsato, Y., Matsuda, H., Hashimoto, A. 2000. A multiple alignment algorithm for metabolic pathway analysis using enzyme hierarchy. Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, 376–383.

  24. Tompa, M., Li, N., Bailey, T.L., Church, G.M., de Moor, B. 2005. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23, 137–144.

    Article  PubMed  CAS  Google Scholar 

  25. van de Wetering, M., Clevers, H. 1992. Sequencespecific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of Watson-Crick double helix. EMBO J 11, 3039–3044.

    PubMed  Google Scholar 

  26. van Wijk, R., Wouter, W., Solinge, V., Nerlov, C., Beutler, E., Gelbart, T., Rijksen, G., Nielsen, F. 2003. Disruption of a novel regulatory element in the erythroid-specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency. Blood 101, 1596–1602.

    Article  PubMed  Google Scholar 

  27. Wasserman, W.W., Sandelin, A. 2004. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 5, 276–286.

    Article  PubMed  CAS  Google Scholar 

  28. Yang, S.Y., Liu, X., Zhang, Y. 2009. Metabolic engineering based on systems biology for chemicals production. Fontiers of Bio In China 4, 260–265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savithri Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meera, A., Rangarajan, L. & Bhat, S. Computational approach towards promoter sequence comparison via TF mapping using a new distance measure. Interdiscip Sci Comput Life Sci 3, 43–49 (2011). https://doi.org/10.1007/s12539-011-0057-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-011-0057-x

Key words

Navigation