Skip to main content
Log in

Prediction of non-classical secreted proteins using informative physicochemical properties

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The prediction of non-classical secreted proteins is a significant problem for drug discovery and development of disease diagnosis. The characteristic of non-classical secreted proteins is they are leaderless proteins without signal peptides in N-terminal. This characteristic makes the prediction of non-classical proteins more difficult and complicated than the classical secreted proteins. We identify a set of informative physicochemical properties of amino acid indices cooperated with support vector machine (SVM) to find discrimination between secreted and non-secreted proteins and to predict non-classical secreted proteins. When the sequence identity of dataset was reduced to 25%, the prediction accuracy on training dataset is 85% which is much better than the traditional sequence similarity-based BLAST or PSI-BLAST tool. The accuracy of independent test is 82%. The most effective features of prediction revealed the fundamental differences of physicochemical properties between secreted and non-secreted proteins. The interpretable and valuable information could be beneficial for drug discovery or the development of new blood biochemical examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, R., Brandmaier, S., Kleine, F., Tischler, P., Heinz, E., Behrens, S., Niinikoski, A., Mewes, H.W., Horn, M., Rattei, T. 2009. Sequence-based prediction of type III secreted proteins. PLoS Pathog 5, e1000376.

    Article  PubMed  Google Scholar 

  2. Bendtsen, J.D., Jensen, L.J., Blom, N., von Heijne, G., Brunak, S. 2004a. Feature-based prediction of nonclassical and leaderless protein secretion. Protein Eng Des Sel 17, 349–356.

    Article  CAS  PubMed  Google Scholar 

  3. Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S. 2004b. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.

    Article  PubMed  Google Scholar 

  4. Bendtsen, J.D., Binnewies, T.T., Hallin, P.F., Sicheritz-Ponten, T., Ussery, D.W. 2005. Genome update: Prediction of secreted proteins in 225 bacterial proteomes. Microbiology 151, 1725–1727.

    Article  CAS  PubMed  Google Scholar 

  5. Bonin-Debs, Boche, I., Gille, H., Brinkmann, U. 2004. Development of secreted proteins as biotherapeutic agents. Expert Opin Biol Ther 4, 551–558.

    Article  CAS  PubMed  Google Scholar 

  6. Chang, C.C., Lin, C.J. 2001. LIBSVM: A library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm.

  7. Chen, Y., Yu, P., Luo, J., Jiang, Y. 2003. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm Genome 14, 859–865.

    Article  CAS  PubMed  Google Scholar 

  8. Chevallet, M., Diemer, H., van Dorssealer, A., Villiers, C., Rabilloud, T. 2007. Toward a better analysis of secreted proteins: The example of the myeloid cells secretome. Proteomics 7, 1757–1770.

    Article  CAS  PubMed  Google Scholar 

  9. Cui, J., Liu, Q., Puett, D., Xu, Y. 2008. Computational prediction of human proteins that can be secreted into the bloodstream. Bioinformatics 24, 2370–2375.

    Article  CAS  PubMed  Google Scholar 

  10. Damas, J.K., Gullestad, L., Aukrust, P. 2001. Cytokines as new treatment targets in chronic heart failure. Curr Control Trials Cardiovasc Med 2, 271–277.

    Article  PubMed  Google Scholar 

  11. Dey, A. 1985. Orthogonal Fractional Factorial Designs. Wiley, New York.

    Google Scholar 

  12. Duong, F., Lazdunski, A., Murgier, M. 1996. Protein secretion by heterologous bacterial ABC-transporters: the C-terminus secretion signal of the secreted protein confers high recognition specificity. Mol Microbiol 21, 459–470.

    Article  CAS  PubMed  Google Scholar 

  13. Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953–971.

    Article  CAS  PubMed  Google Scholar 

  14. Garg, A., Raghava, G.P. 2008. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. In Silico Biol 8, 129–140.

    CAS  PubMed  Google Scholar 

  15. Grimmond, S.M., Miranda, K.C., Yuan, Z., Davis, M.J., Hume, D.A., Yagi, K., Tominaga, N., Bono, H., Hayashizaki, Y., Okazaki, Y., RIKEN GER Group, GSL Members, Teasdale, R.D. 2003. The mouse secretome: Functional classification of the proteins secreted into the extracellular environment. Genome Res 13, 1350–1359.

    Article  CAS  PubMed  Google Scholar 

  16. Ho, S.Y., Shu, L.S., Chen, J.H. 2004. Intelligent evolutionary algorithms for large parameter optimization problems. IEEE Transactions on Evolutionary Computation 8, 522–541.

    Article  Google Scholar 

  17. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., Kanehisa, M. 2008. AAindex: Amino acid index database, progress report 2008. Nucleic Acids Res 36, D202–205.

    Article  CAS  PubMed  Google Scholar 

  18. Keller, M., Ruegg, A., Werner, S., Beer, H.D. 2008. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831.

    Article  CAS  PubMed  Google Scholar 

  19. Klee, E.W., Sosa, C.P. 2007. Computational classification of classically secreted proteins. Drug Discov Today 12, 234–240.

    Article  CAS  PubMed  Google Scholar 

  20. Klee, E.W., Finlay, J.A., McDonald, C., Attewell, J.R. Hebrink, D., Dyer, R., Love, B., Vasmatzis, G., Li, T.M., Beechem, J.M., Klee, G.G. 2006. Bioinformatics methods for prioritizing serum biomarker candidates. Clin Chem 52, 2162–2164.

    Article  CAS  PubMed  Google Scholar 

  21. Klumperman, J. 2000. Transport between ER and Golgi. Curr Opin Cell Biol 12, 445–449.

    Article  CAS  PubMed  Google Scholar 

  22. Nickel, W. 2003. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270, 2109–2119.

    Article  CAS  PubMed  Google Scholar 

  23. Nickel, W. 2005. Unconventional secretory routes: Direct protein export across the plasma membrane of mammalian cells. Traffic 6, 607–614.

    Article  CAS  PubMed  Google Scholar 

  24. Pierleoni, A., Martelli, P.L., Fariselli, P., Casadio, R. 2006. BaCelLo: A balanced subcellular localization predictor. Bioinformatics 22, e408–e416.

    Article  CAS  PubMed  Google Scholar 

  25. Tang, J., Bond, J.S. 1998. Maturation of secreted meprin alpha during biosynthesis: role of the furin site and identification of the COOH-terminal amino acids of the mouse kidney metalloprotease subunit. Arch Biochem Biophys 349, 192–200.

    Article  CAS  PubMed  Google Scholar 

  26. Tung, C.W., Ho, S.Y. 2007. POPI: Predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Bioinformatics 23, 942–949.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, G., Dunbrack, J.R.J. 2003. PISCES: A protein sequence culling server. Bioinformatics 19, 1589–1591.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Q. 1978. On the optimality of orthogonal experimental design. Acta Math Appl Sinica 1, 283–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinn-Ying Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CH., Huang, HL., Hsu, KT. et al. Prediction of non-classical secreted proteins using informative physicochemical properties. Interdiscip Sci Comput Life Sci 2, 263–270 (2010). https://doi.org/10.1007/s12539-010-0023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-010-0023-z

Key words

Navigation