Skip to main content
Log in

Polytope volume by descent in the face lattice and applications in social choice

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

We describe the computation of polytope volumes by descent in the face lattice, its implementation in Normaliz, and the connection to reverse-lexicographic triangulations. The efficiency of the algorithm is demonstrated by several high dimensional polytopes of different characteristics. Finally, we present an application to voting theory where polytope volumes appear as probabilities of certain paradoxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Released July 7, 2018.

References

  1. Assarf, B., Gawrilow, E., Herr, K., Joswig, M., Lorenz, B., Paffenholz, A., Rehn, T.: Computing convex hulls and counting integer points with polymake. Math. Program. Comput. 9, 1–38 (2017)

    Article  MathSciNet  Google Scholar 

  2. Avis, D.: lrs: a revised implementation of the reverse search vertex enumeration algorithm. Available at http://cgm.cs.mcgill.ca/~avis/C/lrs.html

  3. Beck, M., Hoşten, S.: Cyclotomic polytopes and growth series of cyclotomic lattices. Math. Res. Lett. 13, 607–622 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bruns, W., Gubeladze, J.: Polytopes, Rings and K-Theory. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Bruns, W., Hemmecke, R., Ichim, B., Köppe, M., Söger, C.: Challenging computations of Hilbert bases of cones associated with algebraic statistics. Exp. Math. 20, 25–33 (2011)

    Article  MathSciNet  Google Scholar 

  6. Bruns, W., Ichim, B.: Normaliz: algorithms for affine monoids and rational cones. J. Algebra 324, 1098–1113 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz. Algorithms for Rational Cones and Affine Monoids.https://doi.org/10.5281/zenodo.4246974. Available at http://normaliz.uos.de

  8. Bruns, W., Ichim, B., Söger, C.: The power of pyramid decomposition in normaliz. J. Symbol. Comput. 74, 513–536 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bruns, W., Ichim, B., Söger, C.: Computations of volumes and Ehrhart series in four candidates elections. Ann. Oper. Res. 280, 241–265 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bruns, W., Sieg, R., Söger, C.: Normaliz 2013–2016. In: Böckle, G., Decker, W., Malle, G. (eds.) Algorithmic and experimental methods in algebra, geometry, and number theory, pp. 123–146. Springer, Berlin (2018)

    Google Scholar 

  11. Bruns, W., Söger, C.: Generalized Ehrhart series and integration in Normaliz. J. Symbol. Comput. 68, 75–86 (2015)

    Article  Google Scholar 

  12. Büeler, B., Enge, A.: Vinci. Package available from https://www.math.u-bordeaux.fr/~aenge/

  13. Büeler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study. In: Polytopes - combinatorics and computation (Oberwolfach, 1997), 131 – 154, DMV Sem., 29. Birkhäuser, Basel (2000)

  14. Cohen, H.: A Course in Computational Number Theory. Springer, Berlin (1995)

    Google Scholar 

  15. Cohen, J., Hickey, T.: Two algorithms for determining volumes of convex polyhedra. J. Assoc. Comput. Mach. 26, 401–414 (1979)

    Article  MathSciNet  Google Scholar 

  16. de Borda, J.-C.Chevalier: Mémoire sur les élections au scrutin. Histoire de’Académie Royale Des Sci. 102, 657–665 (1781)

    Google Scholar 

  17. de Condorcet, N. M.: Éssai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)

  18. de Condorcet, N.M.: On discovering the plurality will in an election. Appendix to On the constitution and functions of Provincial assemblies, (1788). In: McLean, I., Hewitt, F. (eds.) Condorcet: Foundations of Social Choice and Political Theory, pp. 148–156. Edward Elgar Publishing, Cheltenham (1994)

    Google Scholar 

  19. Diss, M., Kamwa, E., Tlidi, A.: The Chamberlin-Courant rule and the k-scoring rules: agreement and Condorcet committee consistency, https://doi.org/10.2139/ssrn.3198184. Preprint available from https://halshs.archives-ouvertes.fr/halshs-01817943/document

  20. Emiris, I.Z., Fisikopoulos, V.: Practical polytope volume approximation. ACM Trans. Math. Softw. 44, 38 (2018)

    Article  MathSciNet  Google Scholar 

  21. Fishburn, P., Gehrlein, W.V.: Borda’s rule, positional voting, and Condorcet’s simple majority principle. Public Choice 28, 79–88 (1976)

    Article  Google Scholar 

  22. Fukuda, K.: cddlib. Available at https://people.inf.ethz.ch/fukudak/cdd_home/

  23. Gehrlein, W.V., Lepelley, D.: Voting Paradoxes and Group Coherence. Springer, Berlin (2011)

    Book  Google Scholar 

  24. Gehrlein, W.V., Lepelley, D.: Elections, Voting Rules and Paradoxical Outcomes. Springer, Berlin (2017)

    Book  Google Scholar 

  25. Ichim, B., Moyano-Fernández, J.J.: On the score sheets of a round-robin football tournament. Adv. Appl. Math. 91, 24–43 (2017)

    Article  MathSciNet  Google Scholar 

  26. Kacwin, Ch., Oettershagen, J., Ullrich, T.: On the orthogonality of the Chebyshev–Frolov lattice and application. Monatsh. Math. 184, 425–441 (2017)

    Article  MathSciNet  Google Scholar 

  27. Köppe, M., Zhou, Y.: New computer-based search strategies for extreme functions of the Gomory–Johnson infinite group problem. Math. Program. Comput. 9, 419–469 (2017)

    Article  MathSciNet  Google Scholar 

  28. Lasserre, J.B.: An analytical expression and an algorithm for the volume of a convex polyhedron in \(\mathbb{R}^n\). J. Optim. Theory Appl. 39, 363–377 (1983)

    Article  MathSciNet  Google Scholar 

  29. Martinet, J.: Perfect Lattices in Euclidean Spaces. Springer, Berlin (2003)

    Book  Google Scholar 

  30. Ohsugi, H., Hibi, T.: Toric ideals arising from contingency tables. Ramanujan Math. Soc. Lect. Note Ser. 4, 87–111 (2006)

    MATH  Google Scholar 

  31. Lepelley, D., Ouafdi, A., Smaoui, H.: Probabilities of electoral outcomes: from three-candidate to four-candidate elections. Theor. Decis. 88, 205–229 (2020)

    Article  MathSciNet  Google Scholar 

  32. Sturmfels, B., Welker, V.: Commutative algebra of statistical ranking. J. Algebra 361, 264–286 (2012)

    Article  MathSciNet  Google Scholar 

  33. Schürmann, A.: Exploiting polyhedral symmetries in social choice. Soc. Choice Welf. 40, 1097–1110 (2013)

    Article  MathSciNet  Google Scholar 

  34. Teissier, B.: Monômes, volumes et multiplicités. In: Introduction à la théorie des singularités, II, pp. 127–141. Hermann, Paris (1988)

  35. Ziegler, G.: Lectures on Polytopes. Springer, Berlin (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Ichim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by a grant of Romanian Ministry of Research and Innovation, CNCS - UEFISCDI, Project Number PN-III-P4-ID-PCE-2016-0157, within PNCDI III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruns, W., Ichim, B. Polytope volume by descent in the face lattice and applications in social choice. Math. Prog. Comp. 13, 415–442 (2021). https://doi.org/10.1007/s12532-020-00198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-020-00198-z

Keywords

Mathematics Subject Classification

Navigation