Skip to main content
Log in

Classification of attention levels using a Random Forest algorithm optimized with Particle Swarm Optimization

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Attention is one of the most important cognitive functions since it allows us to discriminate irrelevant stimuli when performing an activity. The presence of an attention deficit significantly affects a person’s performance. This is one of the reasons why it is of utmost importance to determine the state of attention mechanisms.A tool that allows determining the level of attention could be of great help in the diagnosis of syndromes or disorders, as well as in the rehabilitation and treatment of people suffering from attention deficits. In this work, a methodology is proposed based on a Random Forest algorithm optimized with PSO (Particle Swarm Optimization) for the classification of attention levels. These attention levels are divided into three main categories: High Attention, Normal Attention, and Low Attention. The proposed approach demonstrated reaching an accuracy of up to 96%. Finally, the approach from this contribution was compared with the state of the art, demonstrating that this work is a feasible methodology for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelrahman Y, Khan AA, Newn J, Velloso E, Safwat SA, Bailey J, Bulling A, Vetere F, Schmidt A (2019) Classifying attention types with thermal imaging and eye tracking. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3(3):1–27

  • Aceves-Fernandez M (2021) Methodology proposal of ADHD classification of children based on cross recurrence plots. Nonlinear Dyn 104(2):1491–1505

    Article  Google Scholar 

  • Alirezaei M, Sardouie SH (2017) Detection of human attention using EEG signals. In: 2017 24th National and 2nd International Iranian Conference on biomedical engineering (ICBME), pp 1–5, IEEE

  • Angelov P, Kasabov N (2005) Evolving computational intelligence systems. In: Proceedings of the 1st International Workshop on genetic fuzzy systems, pp 76–82

  • Angelov P, Filev DP, Kasabov N (2010) Evolving intelligent systems: methodology and applications, vol 12. Wiley, Hoboken

    Book  Google Scholar 

  • Anstey E , Cordero PA (1999) Dominó D-48: manual, 12 edn, vol 1. TEA, isbn= 84-7174-600-X 

  • Belle A, Hobson R, Najarian K (2011) A physiological signal processing system for optimal engagement and attention detection. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), pp 555–561, IEEE

  • Blascheck T, Kurzhals K, Raschke M, Burch M, Weiskopf D, Ertl T (2014) In: Borgo R, Maciejewski R , Viola I (eds) State-of-the-art of visualization for eye tracking data (eds) Euro Vis (STARs), The Eurographics Association, ISBN = 978-3-03868-028-4. https://doi.org/10.2312/eurovisstar.20141173

  • Borys M, Plechawska-Wójcik M (2017) Eye-tracking metrics in perception and visual attention research. EJMT 3:11–23

    Google Scholar 

  • Campos A (2012) Measure of the ability to rotate mental images. Psicothema, vol 24, no 3, pp 431–434

    Google Scholar 

  • Chakraborty A, Kar AK (2017), Swarm intelligence A review of algorithms. In: Patnaik S, Yang XS, Nakamatsu K (eds) Nature-inspired Computing and Optimization, vol 10, pp 475–494

    Article  Google Scholar 

  • Chen C-Y, Wang C-J, Chen E-L, Wu C-K, Yang YK, Wang J-S, Chung P-C (2010) Detecting sustained attention during cognitive work using heart rate variability. In: 2010 Sixth International Conference on intelligent information hiding and multimedia signal processing, pp 372–375, IEEE

  • Chen OT-C, Chen P-C, Tsai Y-T (2017) Attention estimation system via smart glasses. In: 2017 IEEE Conference on Computational intelligence in bioinformatics and computational biology (CIBCB), pp 1–5, IEEE

  • Colom R, Privado J, García LF, Estrada E, Cuevas L, Shih P-C (2015) Fluid intelligence and working memory capacity: Is the time for working on intelligence problems relevant for explaining their large relationship? Pers Individ Differ 79:75–80

    Article  Google Scholar 

  • Csapó B et al (2020) Development of inductive reasoning in students across school grade levels. Think Skills Creat 37:100699

    Article  Google Scholar 

  • Diamond A (2013) Executive functions. Annu Rev Psychol 64:135–168

    Article  Google Scholar 

  • Fernandez-Fraga S, Aceves-Fernandez M, Pedraza-Ortega J (2019) EEG data collection using visual evoked, steady state visual evoked and motor image task, designed to brain computer interfaces (BCI) development. Data Brief 25:103871

    Article  Google Scholar 

  • García-Ogueta M (2001) Mecanismos atencionales y síndromes neuropsicológicos. Rev Neurol 32(5):463–467

    Google Scholar 

  • Goto M, Tanaka T, Matsumoto K (2021) Estimating attention level from blinks and head movement. EPiC Ser Comput 77:52–59

    Article  Google Scholar 

  • Grandini M, Bagli E, Visani G (2020) Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756

  • Gupta SK (2012) The relevance of confidence interval and p-value in inferential statistics. Indian J Pharmacol 44(1):143

    Article  Google Scholar 

  • Gutiérrez-de Piñeres Botero C et al (2019) “Análisis y representación gráfica de los datos,” Gutiérrez-de Piñeres Botero, C.(2019). Registro de movimientos oculares con el eye tracker Mobile eye XG. Bogotá: Editorial Universidad Católica de Colombia

  • Haghighi S, Jasemi M, Hessabi S, Zolanvari A (2018) PyCM: multiclass confusion matrix library in python. J Open Source Softw 3:729

    Article  Google Scholar 

  • Holland SM (2008) Principal components analysis (PCA). Department of Geology, University of Georgia, Athens, pp 30602–2501

    Google Scholar 

  • Jayawardena G, Michalek A, Jayarathna S (2019) Eye gaze metrics and analysis of AOI for indexing working memory towards predicting ADHD. arXiv preprint arXiv:1906.07183

  • Kagitçibaçi C (2018) 23. application of the D 48 test in Turkey. In: Cronbach LJ, Drenth PJD (eds) Mental tests and cultural adaptation. De Gruyter Mouton, pp 223–232

    Google Scholar 

  • Kennedy J (2006) Swarm intelligence. In: Zomaya AY (ed) Handbook of nature-inspired and innovative computing. Springer, pp 187–219

    Chapter  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on neural networks, vol. 4, pp 1942–1948, IEEE

  • Komiya R, Saitoh T, Shimada K (2018) Image-based attention level estimation of interaction scene by head pose and gaze information. In: 2018 IEEE/ACIS 17th International Conference on computer and information science (ICIS), pp 497–501, IEEE

  • Leclercq M, Zimmermann P (2004) Applied neuropsychology of attention: theory, diagnosis and rehabilitation. Psychology Press, Hove

    Book  Google Scholar 

  • Levantini V, Muratori P, Inguaggiato E, Masi G, Milone A, Valente E, Tonacci A, Billeci L (2020) Eyes are the window to the mind: eye-tracking technology as a novel approach to study clinical characteristics of ADHD. Psychiatry Res 290:113135

    Article  Google Scholar 

  • Liu N-H, Chiang C-Y, Chu H-C (2013) Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 13(8):10273–10286

    Article  Google Scholar 

  • Mohammadhasani N, Caprì T, Nucita A, Iannizzotto G, Fabio RA (2020) Atypical visual scan path affects remembering in ADHD. J Int Neuropsychol Soc 26(6):557–566

    Article  Google Scholar 

  • Navarro O, González ÁL, Molina AI (2018) Experience of use of eye tracking technology with children who have attention problems. In: 2018 International Symposium on computers in education (SIIE), pp 1–6, IEEE

  • Ordóñez De León B, Aceves-Fernandez MA, Fernandez-Fraga SM, Ramos-Arreguín J, Gorrostieta-Hurtado E (2020) An improved particle swarm optimization (PSO): method to enhance modeling of airborne particulate matter (PM10). Evol Syst 11(4):615–624

    Article  Google Scholar 

  • Panigrahi BK, Shi Y, Lim M-H (2011) Handbook of swarm intelligence: concepts, principles and applications, vol 8. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Patro S, Sahu KK (2015) Normalization: a preprocessing stage. arXiv preprint arXiv:1503.06462

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Rios-Lago M, Muñoz-Céspedes J, Paúl-Lapedriza N (2007) Alteraciones de la atención tras daño cerebral traumático: evaluación y rehabilitación. Rev Neurol 44(5):291–7

    Google Scholar 

  • Salvucci DD, Goldberg JH (2000) Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on eye tracking research & applications, pp 71–78

  • Sells R, Larner AJ (2011) The Poppelreuter figure visual perceptual function test for dementia diagnosis. Prog Neurol Psychiatry 15(2):17–21

    Article  Google Scholar 

  • Shaikh AG, Zee DS (2018) Eye movement research in the twenty-first century—a window to the brain, mind, and more. The Cerebellum 17:252–258

    Article  Google Scholar 

  • Shi Z-F, Zhou C, Zheng W-L, Lu B-L (2017) Attention evaluation with eye tracking glasses for EEG-based emotion recognition. In: 2017 8th International IEEE/EMBS Conference on neural engineering (NER), pp 86–89, IEEE

  • Toa CK, Sim KS, Tan SC (2021) Electroencephalogram-based attention level classification using convolution attention memory neural network. IEEE Access 9:58870–58881

    Article  Google Scholar 

  • Türkan BN, Amado S, Ercan ES, Perçinel I (2016) Comparison of change detection performance and visual search patterns among children with/without ADHD: evidence from eye movements. Res Dev Disabil 49:205–215

    Article  Google Scholar 

  • Zaletelj J (2017) Estimation of students’ attention in the classroom from Kinect features. In: Proceedings of the 10th International Symposium on image and signal processing and analysis, pp 220–224, IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Aceves-Fernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedolla-Ibarra, M.G., Cabrera-Hernandez, M.d.C., Aceves-Fernández, M.A. et al. Classification of attention levels using a Random Forest algorithm optimized with Particle Swarm Optimization. Evolving Systems 13, 687–702 (2022). https://doi.org/10.1007/s12530-022-09444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-022-09444-2

Keywords

Navigation