Skip to main content
Log in

Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests using Airborne LiDAR Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The new-era space-borne LiDAR systems, viz. ICESat-2 and GEDI, offer new possibilities for mapping terrain and canopy heights through geophysical data products, viz ATL08 (ICESat-2) and L2A (GEDI). Additionally, GEDI provides an above-ground biomass density (AGBD) product (L4A) derived through parametric calibration of L2A metrics. Detailed comparisons of these data products among different forest types and other influencing factors (viz. acquisition parameters and ground conditions) are essential for continued improvement and broader use. In this study, we perform a detailed accuracy assessment of these data products over tropical dry deciduous forests in the Central Indian region during leaf-off and leaf-on seasons with the reference airborne LiDAR data. The GEDI L4A (AGBD) product is validated against the reference AGBD map derived from the field AGBD estimates and canopy height model from airborne LiDAR. Our results suggest that regardless of leaf condition, strong or power beams during nights from both systems (GEDI and ICESat-2) are highly capable of retrieving terrain height with RMSE 2.8–3.8 m and low bias of − 0.2 m to + 1.4 m. Nevertheless, GEDI canopy height retrievals were strongly linked to leaf availability with significant underestimations (bias > − 5.8 m) during the leaf-off season against a bias of ± 1 m during the leaf-on season. In contrast, strong night beams from ICESat-2 were found to retrieve canopy heights accurately with a bias of − 0.4 m and RMSE of 3.5 m during the leaf-off season. The GEDI-AGBD estimates were found to be substantially mismatched with the reference AGBD map with an overall RMSE of 46%. The atmospheric conditions and topographic slope strongly influenced the accuracy of both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The GEDI and ATLAS data used in this study are open-source datasets and can be downloaded from https://search.earthdata.nasa.gov/. The field measurements and LiDAR measurements are available with the corresponding author (Suraj Reddy Rodda). The data are not publicly available due to the restrictions and policies made during data collection.

References

  • Adam, M., Urbazaev, M., Dubois, C., & Schmullius, C. (2020). Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: Influence of environmental and acquisition parameters. Remote Sensing, 12(23), 3948. https://doi.org/10.3390/rs12233948.

    Article  Google Scholar 

  • Baskerville, G. L. (1972). Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 2(1), 49–53. https://doi.org/10.1139/x72-009.

    Article  Google Scholar 

  • Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., & Henry, M. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. https://doi.org/10.1111/gcb.12629.

    Article  Google Scholar 

  • Coops, N. C., Tompalski, P., Goodbody, T. R. H., Queinnec, M., Luther, J. E., Bolton, D. K., White, J. C., Wulder, M. A., van Lier, O. R., & Hermosilla, T. (2021). Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 260, 112477. https://doi.org/10.1016/j.rse.2021.112477.

    Article  Google Scholar 

  • Dorado-Roda, I., Pascual, A., Godinho, S., Silva, C. A., Botequim, B., Rodríguez-Gonzálvez, P., González-Ferreiro, E., & Guerra-Hernández, J. (2021). Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sensing, 13(12), 2279. https://doi.org/10.3390/rs13122279.

    Article  Google Scholar 

  • Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., & Armston, J. (2020). The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Science of Remote Sensing, 1, 100002. https://doi.org/10.1016/j.srs.2020.100002.

    Article  Google Scholar 

  • Duncanson, L., Kellner, J. R., Armston, J., Dubayah, R., Minor, D. M., Hancock, S., Healey, S. P., Patterson, P. L., Saarela, S., Marselis, S., & Silva, C. E. (2022). Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 270, 112845. https://doi.org/10.1016/j.rse.2021.112845.

    Article  Google Scholar 

  • Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Silva, C. A., Armston, J., Luthcke, S. B., Hofton, M., & Kellner, J. R. (2020). Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment, 242, 111779. https://doi.org/10.1016/j.rse.2020.111779.

    Article  Google Scholar 

  • Fayad, I., Baghdadi, N., & Lahssini, K. (2022). An assessment of the GEDI Lasers’ capabilities in detecting canopy tops and their penetration in a densely vegetated, tropical area. Remote Sensing, 14(13), 2969. https://doi.org/10.3390/rs14132969.

    Article  Google Scholar 

  • Fayad, I., Baghdadi, N., & Riédi, J. (2021). Quality assessment of acquired GEDI waveforms: Case study over france, tunisia and french guiana. Remote Sensing, 13(16), 3144. https://doi.org/10.3390/rs13163144.

    Article  Google Scholar 

  • Fernandez-Diaz, J. C., Velikova, M., & Glennie, C. L. (2022). Validation of ICESat-2 ATL08 terrain and canopy height retrievals in tropical Mesoamerican forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2956–2970. https://doi.org/10.1109/JSTARS.2022.3163208.

    Article  Google Scholar 

  • Ghosh, S. M., Behera, M. D., Kumar, S., Das, P., Prakash, A. J., Bhaskaran, P. K., Roy, P. S., Barik, S. K., Jeganathan, C., Srivastava, P. K., & Behera, S. K. (2022). Predicting the forest canopy height from LiDAR and multi-sensor data using machine learning over India. Remote Sensing, 14(23), 5968. https://doi.org/10.3390/rs14235968.

    Article  Google Scholar 

  • Khosravipour, A., Skidmore, A. K., & Isenburg, M. (2016). Generating spike-free digital surface models using LiDAR raw point clouds: A new approach for forestry applications. International Journal of Applied Earth Observation and Geoinformation, 52, 104–114. https://doi.org/10.1016/j.jag.2016.06.005.

    Article  Google Scholar 

  • Khosravipour, A., Skidmore, A. K., Isenburg, M., Wang, T., & Hussin, Y. A. (2014). Generating pit-free canopy height models from airborne lidar. Photogrammetric Engineering & Remote Sensing, 80(9), 863–872. https://doi.org/10.14358/PERS.80.9.863.

    Article  Google Scholar 

  • Lahssini, K., Baghdadi, N., Le Maire, G., & Fayad, I. (2022). Influence of GEDI acquisition and processing parameters on canopy height estimates over tropical forests. Remote Sensing, 14(24), 6264. https://doi.org/10.3390/rs14246264.

    Article  Google Scholar 

  • Lefsky, M. A. (2010). A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophysical Research Lettershttps://doi.org/10.1029/2010GL043622.

    Article  Google Scholar 

  • Liu, A., Cheng, X., & Chen, Z. (2021). Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sensing of Environment, 264, 112571. https://doi.org/10.1016/j.rse.2021.112571.

  • Musthafa, M., & Singh, G. (2022). Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India. Advances in Space Research, 69(9), 3245–3257. https://doi.org/10.1016/j.asr.2022.02.002.

    Article  Google Scholar 

  • Musthafa, M., Singh, G., & Kumar, P. (2023). Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Environmental Monitoring and Assessment, 195(1), 1–17. https://doi.org/10.1007/s10661-022-10657-w.

    Article  Google Scholar 

  • Nandy, S., Srinet, R., & Padalia, H. (2021). Mapping forest height and aboveground biomass by integrating ICESat-2, Sentinel-1 and Sentinel-2 data using Random Forest algorithm in northwest Himalayan foothills of India. Geophysical Research Letters, 48(14), e2021GL093799. https://doi.org/10.1029/2021GL093799.

    Article  Google Scholar 

  • Narine, L. L., Popescu, S. C., & Malambo, L. (2020). Using ICESat-2 to estimate and map forest aboveground biomass: A first example. Remote Sensing, 12(11), 1824. https://doi.org/10.3390/rs12111824.

    Article  Google Scholar 

  • Neuenschwander, A., Guenther, E., White, J. C., Duncanson, L., & Montesano, P. (2020). Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sensing of Environment, 251, 112110. https://doi.org/10.1016/j.rse.2020.112110.

    Article  Google Scholar 

  • Neuenschwander, A. L., & Magruder, L. A. (2019). Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sensing, 11(14), 1721. https://doi.org/10.3390/rs11141721.

    Article  Google Scholar 

  • Neuenschwander, A., & Pitts, K. (2019). The ATL08 land and vegetation product for the ICESat-2 Mission. Remote Sensing of Environment, 221, 247–259. https://doi.org/10.1016/j.rse.2018.11.005.

    Article  Google Scholar 

  • Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., Hancock, D. W., & Harbeck, K. (2019). The Ice, Cloud, and Land Elevation Satellite–2 Mission: A global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sensing of Environment, 233, 111325. https://doi.org/10.1016/j.rse.2019.111325.

    Article  Google Scholar 

  • Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C. E., & Armston, J. (2021). Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165. https://doi.org/10.1016/j.rse.2020.112165.

    Article  Google Scholar 

  • Réjou-Méchain, M., Barbier, N., Couteron, P., Ploton, P., Vincent, G., Herold, M., Mermoz, S., Saatchi, S., Chave, J., De Boissieu, F., & Féret, J. B. (2019). Upscaling Forest biomass from field to satellite measurements: sources of errors and ways to reduce them. Surveys in Geophysics, 40(4), 881–911. https://doi.org/10.1007/s10712-019-09532-0.

    Article  Google Scholar 

  • Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9), 1163–1167. https://doi.org/10.1111/2041-210X.12753.

    Article  Google Scholar 

  • Rodda, S. R., Thumaty, K. C., Praveen, M. S. S., Jha, C. S., & Dadhwal, V. K. (2021). Multi-year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous forest of India. Agricultural and Forest Meteorology, 301–302. https://doi.org/10.1016/j.agrformet.2021.108351.

    Article  Google Scholar 

  • Roussel, J.-R., Auty, D., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S., Bourdon, J. F., De Boissieu, F., & Achim, A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, 112061. https://doi.org/10.1016/j.rse.2020.112061.

    Article  Google Scholar 

  • Silva, C. A., Duncanson, L., Hancock, S., Neuenschwander, A., Thomas, N., Hofton, M., Fatoyinbo, L., Simard, M., Marshak, C. Z., Armston, J., & Lutchke, S. (2021). Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment, 253, 112234. https://doi.org/10.1016/j.rse.2020.112234.

    Article  Google Scholar 

  • Simard, M., Pinto, N., Fisher, J. B., & Baccini, A. (2011). Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research: Biogeosciences (2005–2012). https://doi.org/10.1029/2011JG001708.

    Article  Google Scholar 

  • Sothe, C., Gonsamo, A., Lourenço, R. B., Kurz, W. A., & Snider, J. (2022). Spatially continuous mapping of forest canopy height in Canada by combining GEDI and ICESat-2 with PALSAR and sentinel. Remote Sensing, 14(20), 5158. https://doi.org/10.3390/rs14205158.

    Article  Google Scholar 

  • Wang, C., Zhu, X., Nie, S., Xi, X., Li, D., Zheng, W., & Chen, S. (2019). Ground elevation accuracy verification of ICESat-2 data: A case study in Alaska, USA. Optics Express, 27(26), 38168–38179. https://doi.org/10.1364/OE.27.038168.

    Article  Google Scholar 

  • Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., Hilker, T., Bater, C. W., & Gobakken, T. (2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 121, 196–209. https://doi.org/10.1016/j.rse.2012.02.001.

    Article  Google Scholar 

  • Xing, Y., Huang, J., Gruen, A., & Qin, L. (2020). Assessing the performance of ICESat-2/ATLAS multi-channel photon data for estimating ground topography in forested terrain. Remote Sensing, 12(13), 2084. https://doi.org/10.3390/rs12132084.

    Article  Google Scholar 

  • Zolkos, S. G., Goetz, S. J., & Dubayah, R. (2013). A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289–298. https://doi.org/10.1016/j.rse.2012.10.017.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been carried out as part of the National Carbon Project, funded by ISRO–Geosphere Biosphere Programme (ISRO–GBP). We gratefully acknowledge the generous logistical support and necessary permissions extended by the Chief Conservator of Forests and Divisional Forest Officer (Production), Betul, Madhya Pradesh Forest Department, India. Consistent support of the Director and Deputy Director, National Remote Sensing Centre, Hyderabad, India, to successfully carry out this study is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraj Reddy Rodda.

Ethics declarations

Conflict of Interest

Authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2339 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodda, S.R., Nidamanuri, R.R., Fararoda, R. et al. Evaluation of Height Metrics and Above-Ground Biomass Density from GEDI and ICESat-2 Over Indian Tropical Dry Forests using Airborne LiDAR Data. J Indian Soc Remote Sens 52, 841–856 (2024). https://doi.org/10.1007/s12524-023-01693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01693-1

Keywords

Navigation