Skip to main content

Advertisement

Log in

Seven Decades of Dimensional and Mass Balance Changes on Dokriani Bamak and Chhota Shigri Glaciers, Indian Himalaya, Using Satellite Data and Modelling

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In the present study, dimensional (glacier area and snout position) and mass balance changes of Dokriani Bamak (central Himalaya) and Chhota Shigri (western Himalaya) glaciers have been investigated over the last seven decades using satellite data and modelling. Dimensional changes were investigated using satellite data from Corona (1968–1971), Landsat TM/ETM+ (1993–2010) and Sentinel-MSI (2020) along with limited field checks, while annual and seasonal mass balances on both the glaciers were reconstructed using a simple temperature-index model since 1950. Dokriani Bamak and Chhota Shigri glaciers showed deglaciation and retreat over 1968–2020 with limited areal and snout changes up to 1990s, and then accelerated rates in the twenty-first century, especially after ~ 2010. The mean annual glacier-wide mass balances were computed as − 0.09 ± 0.35 m w.e./y and − 0.12 ± 0.28 m w.e./y with equivalent cumulative mass wastage of − 6.33 m w.e. and − 8.61 m w.e. on Dokriani Bamak and Chhota Shigri glaciers over 1950–2020, respectively. Both the glaciers showed decadal positive mass balances over 1950–1980s followed by a limited wastage over 1980–2000, and an accelerated decadal mass wastage post-2000, in agreement with decreasing glacier velocities. As a result of an accelerated post-2000 wastage, a western tributary glacier detached from the Chhota Shigri Glacier, providing much higher deglaciation rate on Chhota Shigri Glacier compared to Dokriani Bamak Glacier. The present study revealed that mass balance exerts significant control on deglaciation and retreat of both the glaciers. Though the mass wastage patterns were roughly similar on both the glaciers, Chhota Shigri Glacier showed consistently lower terminus retreat than that of the Dokriani Bamak Glacier because of the presence of thick debris cover and local steep topographic settings around glacier snout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azam, M. F., & Srivastava, S. (2020). Mass balance and runoff modelling of partially debris-covered Dokriani Glacier in monsoon-dominated Himalaya using ERA5 data since 1979. Journal of Hydrology, 590, 125432. https://doi.org/10.1016/j.jhydrol.2020.125432

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., & Kargel, J. S. (2018). Review of the status and mass changes of Himalayan-Karakoram glaciers. Journal of Glaciology, 64(243), 61–74. https://doi.org/10.1017/jog.2017.86

    Article  Google Scholar 

  • Azam, M. F. (2021). Need of integrated monitoring on reference glacier catchments for future water security in Himalaya. Water Security, 14, 100098. https://doi.org/10.1016/j.wasec.2021.100098

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A., Linda, A., & Singh, V. B. (2014). Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Annals of Glaciology, 55(66), 69–80. https://doi.org/10.3189/2014AoG66A104

    Article  Google Scholar 

  • Azam, M. F., Kargel, J. S., Shea, J. M., Nepal, S., Haritashya, U. K., Srivastava, S., Maussion, F., Qazi, N., Chevallier, P., Dimri, A. P., & Kulkarni, A. V. (2021). Glaciohydrology of the Himalaya-Karakoram. Science. https://doi.org/10.1126/science.abf3668

    Article  Google Scholar 

  • Azam, M. F., Ramanathan, A. L., Wagnon, P., Vincent, C., Linda, A., Berthier, E., Sharma, P., Mandal, A., Angchuk, T., Singh, V. B., & Pottakkal, J. G. (2016). Meteorological conditions, seasonal and annual mass balances of Chhota Shigri Glacier, western Himalaya, India. Annals of Glaciology, 57(71), 328–338. https://doi.org/10.3189/2016AoG71A570

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Ramanathan, A., Vincent, C., Sharma, P., Arnaud, Y., Linda, A., Pottakkal, J. G., Chevallier, P., Singh, V. B., & Berthier, E. (2012). From balance to imbalance: A shift in the dynamic behaviour of Chhota Shigri glacier, western Himalaya, India. Journal of Glaciology, 58(208), 315–324. https://doi.org/10.3189/2012JoG11J123

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Kumar, N., Srivastava, S., Pottakkal, J. G., & Chevallier, P. (2019). Snow and ice melt contributions in a highly glacierized catchment of Chhota Shigri Glacier (India) over the last five decades. Journal of Hydrology, 574, 760–773. https://doi.org/10.1016/j.jhydrol.2019.04.075

    Article  Google Scholar 

  • Bahuguna, I. M., Rathore, B. P., Brahmbhatt, R., Sharma, M., Dhar, S., Randhawa, S. S., Kumar, K., Romshoo, S., Shah, R. D., Ganjoo, R. K., & Ajai. (2014). Are the Himalayan glaciers retreating? Current Science, 106, 1008–1013.

    Google Scholar 

  • Bandyopadhyay, D., Singh, G., & Kulkarni, A. V. (2019). Spatial distribution of decadal ice-thickness change and glacier stored water loss in the Upper Ganga basin, India during 2000–2014. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-53055-y

    Article  Google Scholar 

  • Banerjee, A., & Azam, M. F. (2016). Temperature reconstruction from glacier length fluctuations in the Himalaya. Annals of Glaciology, 57(71), 189–198. https://doi.org/10.3189/2016AoG71A047

    Article  Google Scholar 

  • Banerjee, A., & Shankar, R. (2013). On the response of Himalayan glaciers to climate change. Journal of Glaciology, 59(215), 480–490. https://doi.org/10.3189/2013JoG12J130

    Article  Google Scholar 

  • Basnett, S., Kulkarni, A. V., & Bolch, T. (2013). The influence of debris cover and glacial lakes on the recession of glaciers in Sikkim Himalaya, India. Journal of Glaciology, 59(218), 1035–1046. https://doi.org/10.3189/2013JoG12J184

    Article  Google Scholar 

  • Benn, D. I., & Evans, D. J. A. (2010). Glaciers and glaciation. Hodder Education.

    Google Scholar 

  • Berthier, E., Arnaud, Y., Kumar, R., Ahmad, S., Wagnon, P., & Chevallier, P. (2007). Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sensing of Environment, 108(3), 327–338. https://doi.org/10.1016/j.rse.2006.11.017

    Article  Google Scholar 

  • Bhambri, R., & Bolch, T. (2009). Glacier mapping: A review with special reference to the Indian Himalayas. Progress in Physical Geography, 33(5), 672–704. https://doi.org/10.1177/0309133309348112

    Article  Google Scholar 

  • Bhambri, R., Bolch, T., Chaujar, R. K., & Kulshreshtha, S. C. (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203), 543–556. https://doi.org/10.3189/002214311796905604

    Article  Google Scholar 

  • Bhattacharya, A., Bolch, T., Mukherjee, K., Pieczonka, T., Kropáček, J. A. N., & Buchroithner, M. F. (2016). Overall recession and mass budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing data. Journal of Glaciology, 62(236), 1115–1133. https://doi.org/10.1017/jog.2016.96

    Article  Google Scholar 

  • Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., & Zhang, G. (2019). Status and change of the cryosphere in the extended Hindu Kush Himalaya region. In P. Wester, A. Mishra, A. Mukherji, & A. Shrestha (Eds.), The Hindu Kush Himalaya Assessment (pp. 209–255). Cham: Springer. https://doi.org/10.1007/978-3-319-92288-1_7

    Chapter  Google Scholar 

  • Bolch, T., Yao, T., Kang, S., Buchroithner, M. F., Scherer, D., Maussion, F., Huintjes, E., & Schneider, C. (2010). A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. The Cryosphere, 4(3), 419–433. https://doi.org/10.5194/tc-4-419-2010

    Article  Google Scholar 

  • Brahmbhatt, R. M., Bahuguna, I. M., Rathore, B. P., Kulkarni, A. V., Shah, R. D., Rajawat, A. S., & Kargel, J. S. (2017). Significance of glacio-morphological factors in glacier retreat: A case study of part of Chenab basin, Himalaya. Journal of Mountain Science, 14(1), 128–141. https://doi.org/10.1007/s11629-015-3548-0

    Article  Google Scholar 

  • Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9), 668–673. https://doi.org/10.1038/ngeo2999

    Article  Google Scholar 

  • Burns, P., & Nolin, A. (2014). Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote Sensing of Environment, 140, 165–178. https://doi.org/10.1016/j.rse.2013.08.026

    Article  Google Scholar 

  • Chand, P., & Sharma, M. C. (2015). Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971–2010/13). Global and Planetary Change, 135, 133–147. https://doi.org/10.1016/j.gloplacha.2015.10.013

    Article  Google Scholar 

  • Chandrasekharan, A., Ramsankaran, R. A. A. J., Pandit, A., & Rabatel, A. (2018). Quantification of annual glacier surface mass balance for the Chhota Shigri Glacier, Western Himalayas, India using an Equilibrium-Line Altitude (ELA) based approach. International Journal of Remote Sensing, 39(23), 9092–9112. https://doi.org/10.1080/01431161.2018.1506182

    Article  Google Scholar 

  • Cogley, J. G. (2016). Glacier shrinkage across High Mountain Asia. Annals of Glaciology, 57(71), 41–49. https://doi.org/10.3189/2016AoG71A040

    Article  Google Scholar 

  • Copernicus Climate Change Service (C3S). (2017). ERA5. https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press.

    Google Scholar 

  • Dash, S., & Sharma, M. C. (2019). Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya, India. Journal of Glaciology, 65(249), 13–28. https://doi.org/10.1017/jog.2018.77

    Article  Google Scholar 

  • Dashora, A., Lohani, B., & Malik, J. N. (2007). A repository of earth resource information—CORONA satellite programme. Current Science, 92, 926–932.

    Google Scholar 

  • Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow, P. W., Berthier, E., Vincent, C., Wagnon, P., & Trouvé, E. (2019). Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nature Geoscience, 12(1), 22–27. https://doi.org/10.1038/s41561-018-0271-9

    Article  Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2008). Mass balance studies of the Dokriani Glacier from to, Garhwal Himalaya, India. Bulletin of Glaciological Research, 25, 9–17.

    Google Scholar 

  • Dobhal, D. P., Gergan, J. T., & Thayyen, R. J. (2004). Recession and morphogeometrical changes of Dokriani glacier (1962–1995) Garhwal Himalaya, India. CURRENT SCIENCE-BANGALORE-, 86(5), 692–696.

    Google Scholar 

  • Dobhal, D. P., Pratap, B., Bhambri, R., & Mehta, M. (2021). Mass balance and morphological changes of Dokriani Glacier (1992–2013), Garhwal Himalaya, India. Quaternary Science Advances, 4, 100033.

    Article  Google Scholar 

  • Engelhardt, M., Ramanathan, A. L., Eidhammer, T., Kumar, P., Landgren, O., Mandal, A., & Rasmussen, R. O. Y. (2017). Modelling 60 years of glacier mass balance and runoff for Chhota Shigri Glacier, Western Himalaya, Northern India. Journal of Glaciology, 63(240), 618–628. https://doi.org/10.1017/jog.2017.29

    Article  Google Scholar 

  • Garg, P. K., Shukla, A., Tiwari, R. K., & Jasrotia, A. S. (2017a). Assessing the status of glaciers in part of the Chandra basin, Himachal Himalaya: A multiparametric approach. Geomorphology, 284, 99–114. https://doi.org/10.1016/j.geomorph.2016.10.022

    Article  Google Scholar 

  • Garg, P. K., Garg, S., Yousuf, B., Shukla, A., Kumar, V., & Mehta, M. (2021). Stagnation of the Pensilungpa glacier, western Himalaya, India: Causes and implications. Journal of Glaciology. https://doi.org/10.1017/jog.2021.84

    Article  Google Scholar 

  • Garg, P. K., Shukla, A., & Jasrotia, A. S. (2017b). Influence of topography on glacier changes in the central Himalaya, India. Global and Planetary Change, 155, 196–212. https://doi.org/10.1016/j.gloplacha.2017.07.007

    Article  Google Scholar 

  • Garg, P. K., Yadav, J. S., Rai, S. K., & Shukla, A. (2022). Mass balance and morphological evolution of the Dokriani Glacier, central Himalaya, India during 1999–2014. Geoscience Frontiers, 13(1), 101290.

    Article  Google Scholar 

  • Granshaw, F. D., & Fountain, A. G. (2006). Glacier change (1958–1998) in the north Cascades national park complex, Washington, USA. Journal of Glaciology, 52(177), 251–256. https://doi.org/10.3189/172756506781828782

    Article  Google Scholar 

  • Hall, D. K., Bayr, K. J., Schöner, W., Bindschadler, R. A., & Chien, J. Y. (2003). Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001). Remote Sensing of Environment, 86(4), 566–577. https://doi.org/10.1016/S0034-4257(03)00134-2

    Article  Google Scholar 

  • Haq, M. A., Azam, M. F., & Vincent, C. (2021). Efficiency of artificial neural networks for glacier ice-thickness estimation: A case study in western Himalaya, India. Journal of Glaciology. https://doi.org/10.1017/jog.2021.19

    Article  Google Scholar 

  • Heid, T., & Kääb, A. (2012). Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment, 118, 339–355. https://doi.org/10.1016/j.rse.2011.11.024

    Article  Google Scholar 

  • Immerzeel, W. W., Wanders, N., Lutz, A. F., Shea, J. M., & Bierkens, M. F. P. (2015). Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrology and Earth System Sciences, 19(11), 4673–4687. https://www.hydrolearth-systsci.net/19/4673/2015/hess-19-4673-2015 .

    Article  Google Scholar 

  • Jennings, K. S., Winchell, T. S., Livneh, B., & Molotch, N. P. (2018). Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nature Communications, 9(1), 1148. https://doi.org/10.1038/s41467-018-03629-7.

    Article  Google Scholar 

  • Jóhannesson, T., Raymond, C., & Waddington, E. D. (1989). Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology, 35(121), 355–369.

    Article  Google Scholar 

  • Krishnan, R., Shrestha, A. B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, M. A., Vellore, R., Xu, Y., You, Q., & Ren, Y. (2019). Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In P. Wester, A. Mishra, A. Mukherji, & A. Shrestha (Eds.), The Hindu Kush Himalaya assessment (pp. 57–97). Cham: Springer. https://doi.org/10.1007/978-3-319-92288-1_3

    Chapter  Google Scholar 

  • Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science, 106, 237–244.

    Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current Science, 92, 69–74.

    Google Scholar 

  • Kulkarni, A. V., Rathore, B. P., Singh, S. K., & Bahuguna, I. M. (2011). Understanding changes in the Himalayan cryosphere using remote sensing techniques. International Journal of Remote Sensing, 32(3), 601–615. https://doi.org/10.1080/01431161.2010.517802

    Article  Google Scholar 

  • Kumar, A., Negi, H. S., & Kumar, K. (2020). Long-term mass-balance modelling (1986–2018) and climate sensitivity of Siachen Glacier, East Karakoram. Environmental Monitoring and Assessment, 192(6), 1–16. https://doi.org/10.1007/s10661-020-08323-0

    Article  Google Scholar 

  • Kumar, P., Saharwardi, M. S., Banerjee, A., Azam, M. F., Dubey, A. K., & Murtugudde, R. (2019). Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-54553-9

    Article  Google Scholar 

  • Mandal, A., Ramanathan, A., Azam, M. F., Angchuk, T., Soheb, M., Kumar, N., Pottakkal, J. G., Vatsal, S., Mishra, S., & Singh, V. B. (2020). Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002–2019 using in situ measurements. Journal of Glaciology, 66(259), 727–741. https://doi.org/10.1017/jog.2020.42

    Article  Google Scholar 

  • Mehta, M., Dobhal, D. P., Pratap, B., Majeed, Z., Gupta, A. K., & Srivastava, P. (2014). Late quaternary glacial advances in the tons river valley, Garhwal Himalaya, India and regional synchronicity. The Holocene, 24(10), 1336–1350. https://doi.org/10.1177/0959683614540947

    Article  Google Scholar 

  • Mir, R. A., Jain, S. K., Jain, S. K., Thayyen, R. J., & Saraf, A. K. (2017). Assessment of recent glacier changes and its controlling factors from 1976 to 2011 in Baspa basin, western Himalaya. Arctic, Antarctic, and Alpine Research, 49(4), 621–647.

    Article  Google Scholar 

  • Mukherjee, K., Bhattacharya, A., Pieczonka, T., Ghosh, S., & Bolch, T. (2018). Glacier mass budget and climate reanalysis data indicate a climatic shift around 2000 in Lahaul-Spiti, western Himalaya. Climatic Change, 148(1), 219–233. https://doi.org/10.1007/s10584-018-2185-3

    Article  Google Scholar 

  • Pandey, P., & Venkataraman, G. (2013). Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing, 34(15), 5584–5597. https://doi.org/10.1080/01431161.2013.793464

    Article  Google Scholar 

  • Patel, L. K., Sharma, P., Laluraj, C. M., Thamban, M., Singh, A., & Ravindra, R. (2017). A geospatial analysis of Samudra Tapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya. Natural Hazards, 86(3), 1275–1290. https://doi.org/10.1007/s11069-017-2743-4

    Article  Google Scholar 

  • Pratap, B., Dobhal, D. P., Mehta, M., & Bhambri, R. (2015). Influence of debris cover and altitude on glacier surface melting: A case study on Dokriani Glacier, central Himalaya, India. Annals of Glaciology, 56(70), 9–16. https://doi.org/10.3189/2015AoG70A971

    Article  Google Scholar 

  • Racoviteanu, A. E., Rittger, K., & Armstrong, R. (2019). An automated approach for estimating snowline altitudes in the Karakoram and eastern Himalaya from remote sensing. Frontiers in Earth Science, 7, 220. https://doi.org/10.3389/feart.2019.00220

    Article  Google Scholar 

  • Ragettli, S., Pellicciotti, F., Bordoy, R., & Immerzeel, W. W. (2013). Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resources Research, 49(9), 6048–6066. https://doi.org/10.1002/wrcr.20450

    Article  Google Scholar 

  • Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L., Heynen, M., Shea, J. M., Stumm, D., Joshi, S., & Shrestha, A. (2015). Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78, 94–111. https://doi.org/10.1016/j.advwatres.2015.01.013

    Article  Google Scholar 

  • Ramsankaran, R. A. A. J., Pandit, A., & Azam, M. F. (2018). Spatially distributed ice-thickness modelling for Chhota Shigri Glacier in western Himalayas, India. International Journal of Remote Sensing, 39(10), 3320–3343. https://doi.org/10.1080/01431161.2018.1441563

    Article  Google Scholar 

  • Remya, S. N., Kulkarni, A. V., Hassan Syed, T., & Nainwal, H. C. (2020). Glacier mass loss in the Alaknanda basin, Garhwal Himalaya on a decadal scale. Geocarto International. https://doi.org/10.1080/10106049.2020.1844309

    Article  Google Scholar 

  • Reznichenko, N., Davies, T., Shulmeister, J., & McSaveney, M. (2010). Effects of debris on ice-surface melting rates: An experimental study. Journal of Glaciology, 56(197), 384–394. https://doi.org/10.3189/002214310792447725

    Article  Google Scholar 

  • Rounce, D. R., Hock, R., & Shean, D. E. (2020). Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM). Frontiers in Earth Science, 7, 331. https://doi.org/10.3389/feart.2019.00331

    Article  Google Scholar 

  • Sahu, R., & Gupta, R. D. (2019). Spatiotemporal variation in surface velocity in Chandra basin glacier between 1999 and 2017 using Landsat-7 and Landsat-8 imagery. Geocarto International. https://doi.org/10.1080/10106049.2019.1659423

    Article  Google Scholar 

  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3), 156–159. https://doi.org/10.1038/ngeo1068

    Article  Google Scholar 

  • Sharma, P., Patel, L. K., Ravindra, R., Singh, A., Mahalinganathan, K., & Thamban, M. (2016). Role of debris cover to control specific ablation of adjoining Batal and Sutri Dhaka glaciers in Chandra Basin (Himachal Pradesh) during peak ablation season. Journal of Earth System Science, 125(3), 459–473.

    Article  Google Scholar 

  • Shea, J. M., Immerzeel, W. W., Wagnon, P., Vincent, C., & Bajracharya, S. (2015). Modelling glacier change in the Everest region, Nepal Himalaya. The Cryosphere, 9(3), 1105–1128. https://doi.org/10.5194/tc-9-1105-2015

    Article  Google Scholar 

  • Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., & Osmanoglu, B. (2020). A systematic, regional assessment of high mountain Asia glacier mass balance. Frontiers in Earth Science, 7, 363. https://doi.org/10.3389/feart.2019.00363

    Article  Google Scholar 

  • Shroder, J. F., Bishop, M. P., Copland, L., & Sloan, V. F. (2000). Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geografiska Annaler: Series a, Physical Geography, 82(1), 17–31. https://doi.org/10.1111/j.0435-3676.2000.00108.x

    Article  Google Scholar 

  • Shukla, A., & Garg, P. K. (2020). Spatio-temporal trends in the surface ice velocities of the central Himalayan glaciers, India. Global and Planetary Change, 190, 103187. https://doi.org/10.1016/j.gloplacha.2020.103187

    Article  Google Scholar 

  • Shukla, A., & Qadir, J. (2016). Differential response of glaciers with varying debris cover extent: Evidence from changing glacier parameters. International Journal of Remote Sensing, 37(11), 2453–2479. https://doi.org/10.1080/01431161.2016.1176272

    Article  Google Scholar 

  • Shukla, A., Garg, S., Mehta, M., Kumar, V., & Shukla, U. K. (2020). Temporal inventory of glaciers in the Suru sub-basin, western Himalaya: Impacts of regional climate variability. Earth System Science Data, 12(2), 1245–1265. https://doi.org/10.5194/essd-12-1245-2020

    Article  Google Scholar 

  • Soheb, M., Ramanathan, A., Angchuk, T., Mandal, A., Kumar, N., & Lotus, S. (2020). Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. Journal of Glaciology, 66(258), 627–642. https://doi.org/10.1017/jog.2020.34

    Article  Google Scholar 

  • Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., & Shahgedanova, M. (2007). Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Annals of Glaciology, 46, 195–203. https://doi.org/10.3189/172756407782871468

    Article  Google Scholar 

  • Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Annals of Glaciology, 58(75pt2), 99–109. https://doi.org/10.1017/aog.2017.18

    Article  Google Scholar 

  • Thayyen, R. J., Gergan, J. T., & Dobhal, D. P. (2005). Monsoonal control on glacier discharge and hydrograph characteristics, a case study of Dokriani Glacier, Garhwal Himalaya, India. Journal of Hydrology, 306(1–4), 37–49. https://doi.org/10.1016/j.jhydrol.2004.08.034

    Article  Google Scholar 

  • Tiwari, R. K., Gupta, R. P., & Arora, M. K. (2014). Estimation of surface ice velocity of Chhota-Shigri glacier using sub-pixel ASTER image correlation. Current Science, 106, 853–859.

    Google Scholar 

  • Verma, A., Kumar, A., Gupta, A. K., Tiwari, S. K., Bhambri, R., & Naithani, S. (2018). Hydroclimatic significance of stable isotopes in precipitation from glaciers of Garhwal Himalaya, Upper Ganga Basin (UGB), India. Hydrological Processes, 32(12), 1874–1893. https://doi.org/10.1002/hyp.13128

    Article  Google Scholar 

  • Vijay, S., & Braun, M. (2016). Elevation change rates of glaciers in the Lahaul-Spiti (Western Himalaya, India) during 2000–2012 and 2012–2013. Remote Sensing, 8(12), 1038. https://doi.org/10.3390/rs8121038

    Article  Google Scholar 

  • Vijay, S., & Braun, M. (2018). Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers (Karakoram–Himalaya). Global and Planetary Change, 165, 137–146. https://doi.org/10.1016/j.gloplacha.2018.03.014

    Article  Google Scholar 

  • Vincent, C., Ramanathan, A., Wagnon, P., Dobhal, D. P., Linda, A., Berthier, E., Sharma, P., Arnaud, Y., Azam, M. F., Jose, P. G., & Gardelle, J. (2013). Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. The Cryosphere, 7(2), 569–582. https://doi.org/10.5194/tc-7-569-2013

    Article  Google Scholar 

  • Vincent, C., Soruco, A., Azam, M. F., Basantes-Serrano, R., Jackson, M., Kjøllmoen, B., Thibert, E., Wagnon, P., Six, D., Rabatel, A., & Ramanathan, A. (2018). A nonlinear statistical model for extracting a climatic signal from glacier mass balance measurements. Journal of Geophysical Research: Earth Surface, 123(9), 2228–2242. https://doi.org/10.1029/2018JF004702

    Article  Google Scholar 

  • Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., Pottakkal, J. G., Berthier, E., Ramanathan, A., Hasnain, S. I., & Chevallier, P. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611. https://doi.org/10.3189/002214307784409306

    Article  Google Scholar 

  • Yadav, J. S., Pratap, B., Gupta, A. K., Dobhal, D. P., Yadav, R. B. S., & Tiwari, S. K. (2019). Spatio-temporal variability of near-surface air temperature in the Dokriani glacier catchment (DGC), central Himalaya. Theoretical and Applied Climatology, 136(3), 1513–1532. https://doi.org/10.1007/s00704-018-2544-z

    Article  Google Scholar 

Download references

Acknowledgements

MFA acknowledges the research grant from Core Research Grant (CRG/2020/004877) from Department of Science and Technology (DST, India) as well as research grant from Space Application Centre (ISRO). SS acknowledges the fellowship from Space Application Centre (ISRO). PKG acknowledges the research grant from National Post-Doctoral Fellowship (NPDF) award (PDF/2020/000103) from the DST, India.

Funding

We thank the Department of Science and Technology (DST, India) and Space Application Centre (ISRO) for providing necessary funds to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

MFA designed the study. SS developed the figures. SS and PKG did the analysis. All the authors contributed significantly in writing the manuscript.

Corresponding author

Correspondence to Mohd. Farooq Azam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Garg, P.K. & Azam, M.F. Seven Decades of Dimensional and Mass Balance Changes on Dokriani Bamak and Chhota Shigri Glaciers, Indian Himalaya, Using Satellite Data and Modelling. J Indian Soc Remote Sens 50, 37–54 (2022). https://doi.org/10.1007/s12524-021-01455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01455-x

Keywords

Navigation