Skip to main content

Advertisement

Log in

Seasonal and inter-annual variability of atmosphere CO2 based on NOAA Carbon Tracker analysis and satellite observations

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

A study on seasonal and inter-annual variability of the atmospheric CO2 is carried out based on National Oceanic and Atmospheric Administration Carbon Tracker (NOAACT) re-analysis and satellite measurements of mid-troposphere CO2 by Atmosphere Infrared Sounder on board NASA’s Aqua and lower troposphere CO2 by Greenhouse-gas Observing Satellite. Seasonal and non-seasonal components of each time series were extracted by means of least square based harmonic analysis procedure. The data of surface CO2 fluxes used in the NOAACT are also analyzed to examine its relationship with the atmosphere CO2 variability at different time scales. There exists good consistency between NOAACT analysis and satellite observations in their respective seasonal harmonics and climatology. Surface layer CO2 exhibits large climatological mean over the regions of major anthropogenic sources together with strong seasonal cycle over the humid and cold climatic terrestrial regions especially over the northern hemisphere. Existence of high coherency with the different components of the surface fluxes shows that surface layer atmosphere CO2 seasonality is primarily contributed from the terrestrial ecosystem exchanges and secondarily by anthropogenic and oceanic exchanges. The mid-troposphere CO2 exhibits large values associated with climatology and amplitudes of semi-annual and annual cycles over the northern extra tropics and Polar Regions along with a gradual decreasing trend from northern to southern hemisphere. Inter-annual variability of atmospheric CO2 in the NOAACT in some extent is consistent with the satellite observations. Large scale circulation patterns, its fluctuations associated with ENSO events and large scale ecosystem disturbances have significant influence on the inter-annual variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P., & Tans, P. P. (2000). Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290, 1342–1346.

    Article  Google Scholar 

  • Braswell, B. H., Schimel, D. S., Linder, E., & Moore, B. (1997). The response of global terrestrial ecosystems to interannual temperature variability. Science, 278, 870–872.

    Article  Google Scholar 

  • Chang, C. P., & Li, T. (2000). A theory for the tropical tropospheric biennial oscillation. Journal of the Atmospheric Sciences, 57, 2209–2224.

    Article  Google Scholar 

  • Dettinger, M. D., & Ghil, M. (1998). Seasonal and interannual variations of atmospheric CO2 and climate. Tellus Series B, 50, 1–24.

    Article  Google Scholar 

  • Farquhar, G. D., & Roderick, M. L. (2003). Pinatubo, diffuse light, and the carbon cycle. Science, 299, 1997–1998.

    Article  Google Scholar 

  • Feely, R. A., Gammon, R. H., Taft, B. A., Pullen, P. E., Waterman, L. S., Conway, T. J., et al. (1987). Distribution of chemical tracers in the eastern equatorial Pacific during and after the 1982–1983 El Niño—Southern Oscillation event. Journal Geophysical Research, 92, 6545–6558. doi:10.1029/JC092iC06p06545.

    Article  Google Scholar 

  • Feely, R., et al. (1997). Variability of CO2 distributions and sea-air fluxes in the central and eastern equatorial Pacific during the 1991–1994 El Niño. Deep Sea Research Part II, 44, 1851–1867. doi:10.1016/S0967-0645(97)00061-1.

    Article  Google Scholar 

  • Francey, R., Tans, P. P., Allison, C., Enting, I. G., White, J. W. C., & Trolier, M. (1995). Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 373, 326–330. doi:10.1038/373326a0.

    Article  Google Scholar 

  • Frolicher, T. L., Joos, F., Raible, C. C., & Sarmiento, J. L. (2013). Atmospheric CO2 response to volcanic eruptions: The role of ENSO, season, and variability. Global Biogeochemical Cycles, 27, 239–251.

    Article  Google Scholar 

  • Idso, C. D., Idso, S. B., & Balling, R. C. (1999). The relationship between near-surface air temperature over land and the annual amplitude of the atmosphere’s seasonal CO2 cycle. Environmental and Experimental Botany, 41, 31–37.

    Article  Google Scholar 

  • IPCC AR4 SYR (2007). IPCC fourth assessment report: Climate change, P. 37.

  • Jiang, X., Chahine, M. T., Olsen, E. T., Chen, L. L., & Yung, Y. L. (2010). Inter-annual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder. Geophysical Reseach Letters, 37, L13801. doi:10.1029/2010GL042823.

    Google Scholar 

  • Jones, C. D., Collins, M., Cox, P. M., & Spall, S. A. (2001). The carbon cycle response to ENSO: A coupled climate-carbon cycle model study. Journal of Climate, 14, 4113–4129.

    Article  Google Scholar 

  • Keeling, C. D., Chin, J. F. S., & Whorf, T. P. (1996). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature, 382, 146–149.

    Article  Google Scholar 

  • Keeling, C. D., Whorf, T. P., Wahlen, M., & Vanderplicht, J. (1995). Inter-annual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666–670.

    Article  Google Scholar 

  • Kuze, A., Suto, H., Nakajima, M., & Hamazaki, T. (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48, 6716–6733.

    Article  Google Scholar 

  • Maddy, E. S., Barnet, C. D., Goldberg, M., Sweeney, C., & Liu, X. (2008). CO2 retrievals from the Atmospheric Infrared Sounder: Methodology and validation. Journal Geophysical Research, 113, D11301. doi:10.1029/2007JD009402.

    Article  Google Scholar 

  • Piao, S. L., et al. (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49–53.

    Article  Google Scholar 

  • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., & Jaramillo, V. J. (2001), The carbon cycle and atmospheric carbon dioxide, in climate change 2001: The scientific basis, In J. T. Houghton et al. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change, pp. 183–287, Cambridge Univ. Press, New York.

  • Qian, H., Joseph, R., & Zeng, N. (2008). Response of the terrestrial carbon-cycle to the El Niño-Southern Oscillation. Tellus B, 60, 537–550.

    Article  Google Scholar 

  • Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y., & Field, C. B. (1997). The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochemical Cycles, 11, 535–560.

    Article  Google Scholar 

  • Rayner, P. J., Law, R. M., & Dargaville, R. (1999). The relationship between tropical CO2 fluxes and the El Niño-Southern Oscillation. Geophysical Reseach Letters, 26, 493–496.

    Article  Google Scholar 

  • Ruzmaikin, A., Aumann, H. H., & Pagano, T. S. (2012). Patterns of CO2 variability from global satellite data. Journal of Climate, 25(18), 6383–6393.

    Article  Google Scholar 

  • Saitoh, N., Imasu, R., Ota, Y., & Niwa, Y. (2009). CO2 retrieval algorithm for the thermal infrared spectra of the Greenhouse Gases Observing Satellite: Potential of retrieving CO2 vertical profile from high-resolution FTS sensor. Journal of Geophysical Research, 114, D17305. doi:10.1029/2008JD011500.

    Article  Google Scholar 

  • Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Reseach Letters, 25, 1297–1300. doi:10.1029/98GL0095.

    Article  Google Scholar 

  • Vonk, J. E., Sanchez-Garcı, L., Van-Dongen, B. E., Alling, V., Kosmach, D., Charkin, A., et al. (2012). Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature. doi:10.1038/nature11392.

    Google Scholar 

  • Yoshida, Y., Ota, Y., Eguchi, N., Kikuchi, N., Nobuta, K., Tran, H., et al. (2011). Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmospheric Measurement Techniques, 4, 717–734. doi:10.5194/amt-4-717-2011.

    Article  Google Scholar 

  • Zeng, N., Mariotti, A., & Wetzel, P. (2005). Terrestrial mechanisms of inter-annual CO2 variability. Global Biogeochemical Cycles, 19, GB1016.

    Article  Google Scholar 

  • Zimov, S. A., Davidov, S. P., Zimova, G. M., Davidova, A. I., Chapin, F. S., III, Chapin, M. C., et al. (1999). Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science, 284, 1973–1976.

    Article  Google Scholar 

Download references

Acknowledgements

This research work is carried out as part of National Carbon Project, ISRO-Geosphere Biosphere Programme. We are very thankful to AIRS team at NASA, GOSAT team at JAXA, and NOAACT for providing the data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra K. Nayak.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnapriya, M., Chandra, A.B., Nayak, R.K. et al. Seasonal and inter-annual variability of atmosphere CO2 based on NOAA Carbon Tracker analysis and satellite observations. J Indian Soc Remote Sens 46, 309–320 (2018). https://doi.org/10.1007/s12524-017-0688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-017-0688-4

Keywords

Navigation