Skip to main content
Log in

Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In this study the high-spatial resolution (0.5 m) hyperspectral imagery with LiDAR data were fused at tree crown object level to classify 8 common tree species in Anyang, Henan, China. First, vertical forest features were extracted from LiDAR point clouds resulting in a canopy height model (CHM), followed by the acquisition of tree crown object (TCO) information from the CHM using a mean shift algorithm. Then, the CHM was combined with a minimum noise fraction transformation (MNF) and enhanced vegetation index (EVI), which were extracted from hyperspectral images. These combined features were used as the input to the SVM to produce a rough classification scheme for different tree species. Finally, a majority voting method was applied to the TCO to produce the final tree species map. The experiment showed that a combination of CHM-spatial-spectral features to classify tree species led to higher accuracy when compared to using only MNF features in the pixel-wise classification. However, the CHM and EVI features had their own limitations, largely depending on different characteristics of the different tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonzo, M., Bookhagen, B., & Roberts, D. A. (2014). Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sensing of Environment, 148, 70–83. doi:10.1016/j.rse.2014.03.018.

    Article  Google Scholar 

  • Andrew, M. E., & Ustin, S. L. (2009). Habitat suitability modelling of an invasive plant with advanced remote sensing data. Diversity and Distributions, 15(4), 627–640. doi:10.1111/j.1472-4642.2009.00568.x.

    Article  Google Scholar 

  • Asner, G. P., & Martin, R. E. (2009). Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment, 7, 269–276. doi:10.1890/070152.

    Article  Google Scholar 

  • Asner, G. P., Knapp, D. E., Kennedy-Bowdoin, T., Jones, M. O., Martin, R. E., Boardman, J., & Hughes, R. F. (2008). Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. Remote Sensing of Environment, 112, 1942–1955. doi:10.1016/j.rse.2007.11.016.

    Article  Google Scholar 

  • Bahria, S., Essoussi, N., & Limam, M. (2010). Hyperspectral data classification using geostatistics and support vector machines. Remote Sensing Letters, 2(2), 99–106. doi:10.1080/01431161.2010.497782.

    Article  Google Scholar 

  • Cao, L., Coops, N. C., Innes, J., Dai, J., & She, G. (2014). Mapping above- and below-ground biomass components in subtropical forests using small-footprint LiDAR. Forests, 5(6), 1356–1373. doi:10.3390/f5061356.

    Article  Google Scholar 

  • Castro-Esau, K. L., Sanchez-Azofeifa, G. A., Rivard, B., Wright, S. J., & Quesada, M. (2006). Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. American Journal of Botany, 93(4), 517–530. doi:10.3732/ajb.93.4.517.

    Article  Google Scholar 

  • Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27.

    Article  Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., & Trofymow, J. A. (2007). Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees, 21(3), 295–310. doi:10.1007/s00468-006-0119-6.

    Article  Google Scholar 

  • Dalponte, M., Orka, H. O., Gobakken, T., Gianelle, D., & Naesset, E. (2013). Tree species classification in boreal forests with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2632–2645. doi:10.1109/TGRS.2012.2216272.

    Article  Google Scholar 

  • Dalponte, M., Orka, H. O., Ene, L. T., Gobakken, T., & Nasset, E. (2014). Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment, 140, 306–317. doi:10.1016/j.rse.2013.09.006.

    Article  Google Scholar 

  • Dian, Y., Fang, S., Le, Y., Xu, Y., & Yao, C. (2014a). Comparison of the different classifiers in vegetation species discrimination using hyperspectral reflectance data. Journal of the Indian Society of Remote Sensing, 42(1), 61–72. doi:10.1007/s12524-013-0309-9.

    Article  Google Scholar 

  • Dian, Y., Li, Z., & Pang, Y. (2014) Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery. Journal of the Indian Society of Remote Sensing, 1–7. doi:10.1007/s12524-014-0392-6.

  • Ghosh, A., Fassnacht, F. E., Joshi, P. K., & Koch, B. (2014). A framework for mapping tree species combining hyperspectral and LiDAR data: role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation, 26, 49–63. doi:10.1016/j.jag.2013.05.017.

    Article  Google Scholar 

  • Jones, T. G., Coops, N. C., & Sharma, T. (2010). Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sensing of Environment, 114, 2841–2852. doi:10.1016/j.rse.2010.07.002.

    Article  Google Scholar 

  • Jones, T. G., Coops, N. C., Gergel, S. E., & Sharma, T. (2014). Employing measures of heterogeneity and an object-based approach to extrapolate tree species distribution data. Diversity, 6(3), 396–414. doi:10.3390/d6030396.

    Article  Google Scholar 

  • Liu, L., Pang, Y., Fan, W., & Li, Z. (2013). Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest. Journal of Remote Sensing, 17(3), 679–695.

    Google Scholar 

  • Ming, D., Ci, T., Cai, H., Li, L., Qiao, C., & Du, J. (2012). Semivariogram-based spatial bandwidth selection for remote sensing image segmentation with mean-shift algorithm. IEEE Geoscience and Remote Sensing Letters, 9(5), 813–817. doi:10.1109/LGRS.2011.2182604.

    Article  Google Scholar 

  • Moustakidis, S., Mallinis, G., Koutsias, N., Theocharis, J. B., & Petridis, V. (2012). SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 50(1), 149–169. doi:10.1109/TGRS.2011.2159726.

    Article  Google Scholar 

  • Nowak, D. J., Hirabayashi, S., Bodine, A., & Greenfield, E. (2014). Tree and forest effects on air quality and human health in the United States. Environmental Pollution, 193, 119–129. doi:10.1016/j.envpol.2014.05.028.

    Article  Google Scholar 

  • Onojeghuo, A. O., & Blackburn, G. A. (2011). Optimising the use of hyperspectral and LiDAR data for mapping reedbed habitats. Remote Sensing of Environment, 115, 2025–2034. doi:10.1016/j.rse.2011.04.004.

    Article  Google Scholar 

  • Pang, Y. (2013). LiCHY: CAF’s LiDAR, CCD and hyperspectral airborne imager. Beijing, China: Proceedings: 13th International Conference on LiDAR Applications for Assessing Forest Ecosystems.

  • Shang, X., & Chazette, P. (2014). Interest of a full-waveform flown UV lidar to derive forest vertical structures and aboveground carbon. Forests, 5(6), 1454–1480. doi:10.3390/f5061454.

    Article  Google Scholar 

  • Tarabalka, Y., Chanussot, J., & Benediktsson, J. A. (2010). Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognition, 43(7), 2367–2379. doi:10.1016/j.patcog.2010.01.016.

    Article  Google Scholar 

  • Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

    Google Scholar 

  • Vauhkonen, J., Hakala, T., Suomalainen, J., Kaasalainen, S., Nevalainen, O., Vastaranta, M., Holopainen, M., & Hyyppa, J. (2013). Classification of spruce and pine trees using active hyperspectral LiDAR. IEEE Geoscience and Remote Sensing Letters, 10(5), 1138–1141. doi:10.1109/LGRS.2012.2232278.

  • White, J. C., Gómez, C., Wulder, M. A., & Coops, N. C. (2010). Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data. Remote Sensing of Environment, 114(7), 1576–1589. doi:10.1016/j.rse.2010.02.012.

    Article  Google Scholar 

  • Zhang, K., & Hu, B. (2012). Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sensing, 4(6), 1741–1757. doi:10.3390/rs4061741.

    Article  Google Scholar 

  • Zhou, J., Proisy, C., Descombes, X., le Maire, G., Nouvellon, Y., Stape, J.-L., Viennoish, G., Zerubiab, J., & Couteronc, P. (2013). Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images. Forest Ecology and Management, 301, 129–141. doi:10.1016/j.foreco.2012.10.007.

Download references

Acknowledgments

The authors would like to thank Luxia Liu for providing detailed information about the tree species in the research area. This research was supported by National Natural Science Foundation of China (grant No. 41501365).; the Fundamental Research Funds for the Central Universities under grant number 2014QC018; and Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoinformation under grant number 2013NGCM05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyong Dian.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dian, Y., Pang, Y., Dong, Y. et al. Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data. J Indian Soc Remote Sens 44, 595–603 (2016). https://doi.org/10.1007/s12524-015-0543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-015-0543-4

Keywords

Navigation