Skip to main content

Advertisement

Log in

Interference of Human Impacts in Urban Growth Modelling with Transition Rules of Cellular Automata, GIS and Multi-Temporal Satellite Imagery: A Case Study of Maraghe, Iran

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Urban growth is the result of physical and human impacts. In this study Cellular Automata (CA) has been used to analyze physical suitability and human forces in urban growth modelling of Maraghe. The multi-temporal satellite imagery, physical suitability and human impacts Layers have been applied to the modelling. In order to evaluate the accuracy of the image classification methods, Fuzzy ARTMAP is compared with Maximum Likelihood Classification (MLC) and Minimum Distance Classification (MDC) methods. The image classification results showed an overall accuracy of 93 %. Therefore, it is employed for classification of multi-temporal satellite imagery. In order to weight physical suitability and human impacts layers or geographical transition rules in the modelling, regression analysis, the correlation coefficient, trial-and-error method and visual comparison used. The statistical methods are presented to validate neighbourhood scales in the urban growth modelling. The calibration of the model is in fact to the estimate value of the physical suitability and human impacts layer (combinatory layer of demand for urban land and the government facilities) in the modelling. The results obtained from the model calibration showed that human impacts have the highest influence in the urban growth among other factors. Also a small neighbourhood scale (25:5 × 5 cells) is more realistic in the modeling. The accuracy of final validation is 83 % and the final scenario is based on this validation. A fuzzy CA has been used in urban growth modeling of Maraghe. The final scenario shows that Maraghe will growth on the east side, where the land demand for built up area and government facilities plays the significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alkheder, S., Wang, J., & Shan, J. (2006). Fuzzy cellular automata approach for urban growth modelling. In: Proceedings ASPRS 2006 Annual Conference. Reno, Nevada. ftp://ftp.ecn.purdue.edu/jshan/proceedings/asprs2006/files/0006.pdf.

  • Allen, P. M., & Sanglier, M. (1981). Urban evolution, self-organization and decision making. Environment and Planning A, 13(1), 167–183.

    Article  Google Scholar 

  • Atefi, Y., Minooei, F., & Dargahi, R. (2010). Housing affordability: A study of real estate market in Iran. In: Proceedings of the 28th International Conference of System Dynamics Society. http://www.systemdynamics.org/conferences/2010/proceed/papers/P1115.pdf

  • Bak, P., Chen, K., & Creutz, M. (1989). Self-organized criticality in the ‘game of life’. Nature, 342(6), 780–782.

    Article  Google Scholar 

  • Barredo, J. I., Kasanko, M., Cormick, N. M., & Lavalle, C. (2003). Modelling dynamic spatialprocesses: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64(3), 145–160.

    Article  Google Scholar 

  • Batty, M. (1997). Cellular automata and urban form: a primer. Journal of the American Planning Association, 63, 266–274.

    Article  Google Scholar 

  • Benenson, I., & Torrens, P. M. (2004). Geosimulation automata-based modeling of urban phenomena. Chichester: John Wiley & Sons Press.

    Book  Google Scholar 

  • Benenson, I., Omer, I., & Hatna, E. (2002). Entity-based modeling of urban residential dynamics: the case of Yaffo, Tel Aviv. Environment and Planning, 29, 491–512.

    Article  Google Scholar 

  • Carpenter, G. A. (1989). Neural network models for pattern recognition and associative memory. Neural Networks, 2, 243–257.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). ARTMAP: supervised real-time learning and classification of non stationary data by a self-organizing neural network. Neural Networks, 4, 565–588.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. B. (1992). Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 3(5), 698–713.

    Article  Google Scholar 

  • Cheng, J., Masse, I., & Ottens, R.H. (2003). Understanding urban growth system: Theories and methods. In: 8th International Conference on Computers in Urban Planning and Urban Management (CUPUM03) (pp. 1–16).

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(1), 699–714.

    Article  Google Scholar 

  • Eastman, J. R. (2011). IDRISI taiga tutorial. Worcester: Clark Labs, Clark University.

    Google Scholar 

  • Langton, C. (1990). Computation at the edge of chaos: phase transitions and emergent computation. Physica D, 42(4), 12–37.

    Article  Google Scholar 

  • Langton, C. (1992). Life at the edge of chaos, Artificial Life II: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. In C. Langton et al. (Eds.), Santa Fe Institute Studies in the Science of Complexity (pp. 41–92). Redwood City: Addison-Wesley.

    Google Scholar 

  • Li, X., & Yeh, A. G. (2000). Modelling sustainable urban development by the integration of constrained cellular automata. International Journal of Geographical Information Science, 14(2), 131–152.

    Article  Google Scholar 

  • Li, X., & Yeh, A. G. (2001). Calibration of cellular automata by using neural networks for the simulation of complex urban system. Environment and Planning A, 33(1), 1445–1462.

    Article  Google Scholar 

  • Liu, Y. (2009). Modelling urban development with geographical information systems and cellular automata. New York: CRC Press (Taylor & Francis Group).

    Google Scholar 

  • Liu, Y., & Phinn, S. R. (2003). Modelling urban development with cellular automata incorporating fuzzy-set approaches. Computers, Environment, and Urban Systems, 27, 637–658.

    Article  Google Scholar 

  • Mannan, B., & Roy, J. (1998). Fuzzy ARTMAP supervised classification of multi-spectral remotely-sensed images. International Journal of Remote Sensing, 19, 767–774.

    Article  Google Scholar 

  • Mantelas, L., Prastacos, P., Thomas, H., & Kostis, K. (2010). Using fuzzy cellular automata to access and simulate urban growth. GeoJournal, 2(1), 1–16.

    Google Scholar 

  • Muchoney, D., & Williamson, J. (2001). A gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multi temporal vegetation index data. IEEE Transactions on Geoscience and Remote Sensing, 3, 1969–1977.

    Article  Google Scholar 

  • O’Sullivan, D. (2001). Exploring spatial process dynamics using irregular cellular automaton models. Geographical Analysis, 33(1), 1–18.

    Article  Google Scholar 

  • Openshaw, S., & Openshaw, C. (1997). Artificial intelligence in geography. New York: Wiley Press.

    Google Scholar 

  • Reveshty, M. A. (2011). The assessment and predicting of land use changes to urban area using multi-temporal satellite imagery and GIS: a case study on Zanjan, Iran (1984–2011). Journal of Geographic Information System, 3(1), 298–305.

    Article  Google Scholar 

  • Rykiel, E. J. (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90, 229–244.

    Google Scholar 

  • Santé, L., Garcia, A. M., Miranda, D., & Crecente, R. (2010). Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96(2), 108–122.

    Article  Google Scholar 

  • Semboloni, F. (2000). The growth of an urban cluster into a dynamic self-modifying spatial pattern. Environment and Planning B: Planning & Design, 27(4), 549–564.

    Article  Google Scholar 

  • Shi, W., & Pang, M. Y. C. (2000). Development of Voronoi-based cellular automata-an integrated dynamic model for geographical information systems. International Journal of Geographical Information Science, 14(5), 455–474.

    Article  Google Scholar 

  • Statistical Center of Iran (2006). http://www.amar.org.ir/portals/2/Files1385/kolliostan/azargharbi.

  • Tong Hou, T.-H., & Pern, M.-D. (2000). New shape classifier by using image projection and a neural network. International Journal of Pattern Recognition and Artificial Intelligence, 14(2), 225–242.

    Article  Google Scholar 

  • Torrens, P.M. (2000). How cellular models of urban systems work. CASA working paper 28. Centre for Advanced Spatial Analysis, University College London.

  • Torrens, P. M. (2003). Automata-based models of urban systems. In P. Longley & M. Batty (Eds.), Advanced spatial analysis (pp. 61–79). Redlands: ESRI Press.

    Google Scholar 

  • Torrens, P. M. (2009). Cellular automata. International Encyclopedia of Human Geography, 3(10), 1–4.

    Article  Google Scholar 

  • White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use. Environment and Planning A, 25(11), 75–99.

    Google Scholar 

  • Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D, 10(2), 1–35.

    Article  Google Scholar 

  • Wu, F. (1996). A linguistic cellular automata simulation approach for sustainable land development in a fast growing region. Computers, Environment, and Urban Systems, 20, 367–387.

    Article  Google Scholar 

  • Wu, F. (2002). Calibration of stochastic cellular automata: the application to rural–urban land conversions. International Journal of Geographical Information Science, 16, 795–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Ahadnejad Reveshty.

About this article

Cite this article

Azari, M., Ahadnejad Reveshty, M. Interference of Human Impacts in Urban Growth Modelling with Transition Rules of Cellular Automata, GIS and Multi-Temporal Satellite Imagery: A Case Study of Maraghe, Iran. J Indian Soc Remote Sens 41, 993–1008 (2013). https://doi.org/10.1007/s12524-013-0275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-013-0275-2

Keywords

Navigation