Skip to main content
Log in

The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells

  • Original Article
  • Published:
Reproductive Medicine and Biology

Abstract

Purpose

Gonocytes are primitive male germ cells residing in the neonatal testes and are unipotent in nature, but also have pluripotent stem cell ability in mice under appropriate culture conditions. This study was performed to elucidate the molecular mechanisms of self-renewal and survival of cultured bovine gonocytes.

Methods

Gonocytes were isolated from neonatal bull calves and were cultured in DMEM/F12 supplemented with 15 % knock-out serum replacement (KSR) and glial cell-derived neurotrophic factor (GDNF). Cells were analyzed six days after culturing for cell-signaling molecular markers.

Results

Colony formation was observed 3–4 days after being cultured. Addition of GDNF enhanced mitogen-activated protein kinase 1/2 (MAPK1/2) phosphorylation and activated the MAPK signaling pathway. Inhibition of MAPK signaling reduced cell proliferation and abolished colony formation. However, inhibition of phosphoinositide 3-kinase-AKT (PI3K-AKT) signaling, a dominant pathway for self-renewal of mouse germ cells, did not show any effects on cultured bovine gonocytes. Expression of cell cycle-related regulators cyclin D2 and cyclin-dependent kinase 2 (CDK2) was downregulated with inhibition of MAPK signaling.

Conclusions

These results indicate activation of MAPK plays a critical role in self-renewal and survival of bovine gonocytes via cyclin D1 and CDK2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vergouwen RP, Hiskamp R, Bas RJ, Roepers-Gajadien HL, Davids JA, de Rooij DG. Postnatal development of testicular cell populations in mice. J Reprod Fertil. 1993;99(2):479–85.

    Article  CAS  PubMed  Google Scholar 

  2. Brinster RL. Male germline stem cells: from mice to men. Science. 2007;316(5823):404–5.

    Article  CAS  PubMed  Google Scholar 

  3. Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol. 2008;24:263–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Nagano M, Avarbock MR, Leonida EB, Brinster CJ, Brinster RL. Culture of mouse spermatogonial stem cells. Tissue Cell. 1998;30(4):389–97.

    Article  CAS  PubMed  Google Scholar 

  5. Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kubota H, Avarbock MR, Brinster RL. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Reprod. 2004;71(3):722–31.

    Article  CAS  PubMed  Google Scholar 

  7. Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens A, Hammer RE. Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci USA. 2005;102(48):17430–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kanatsu-Shinohara M, Muneto T, Lee J, Takenaka M, Chuma S. Long-term culture of male germline stem cells from hamster testes. Biol Reprod. 2008;78(4):611–7.

    Article  CAS  PubMed  Google Scholar 

  9. Kubota H, Wu X, Goodyear SM, Avarbock MR, Brinster RL. Glial cell line-derivedneurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J. 2011;25(8):2604–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA. 2006;103(25):9524–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wu X, Goodyear SM, Tobias JW, Avarbock MR, Brinster RL. Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod. 2011;85(6):1114–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Niwa H. How is pluripotency determined and maintained? Development. 2007;134(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Zhu X, Hahm HS, Wei W, Hao E. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA. 2010;107(18):8129–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Braydich-Stolle L, Kostereva N, Dym M. Hofmann M Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol. 2007;304(1):34–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee J, Kanatsu-Shinohara M, Inoue K, Ogonuki N. Miki H Akt mediates self-renewal division of mouse spermatogonial stem cells. Development. 2007;134(10):1853–9.

    Article  CAS  PubMed  Google Scholar 

  16. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 2007;282(35):25842–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 2008;26(1):266–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S. Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-Cyclin D2 activation. Cell Stem Cell. 2009;5(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  19. Hill JR, Dobrinski I. Male germ cell transplantation in livestock. Reprod Fertil Dev. 2006;118(2):13–8.

    Article  Google Scholar 

  20. Kubota H, Brinster RL. Technology Insight: in vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab. 2006;2(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  21. Kim SM, Fujihara M, Sahare M, Minami N, Yamada M, Imai H. Effects of extracellular matrices and lectin Dolichos biflorus agglutinin on cell adhesion and self-renewal of bovine gonocytes cultured in vitro. Reprod Fertil Dev. 2013;26(2):268–81.

    Article  Google Scholar 

  22. He Z, Kokkinaki M, Dym M. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech. 2009;72(8):586–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Izadyar F. Proliferation and differentiation of bovine Type A spermatogonia during long-term culture. Biol Reprod. 2002;68(1):272–81.

    Article  Google Scholar 

  24. Oatley JM, Reeves JJ, McLean DJ. Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol Reprod. 2004;71(3):942–7.

    Article  CAS  PubMed  Google Scholar 

  25. Fujihara M, Kim SM, Minami N, Yamada M, Imai H. Characterization and in vitro culture of male germ cells from developing bovine testis. J Reprod Dev. 2011;57(3):355–64.

    Article  CAS  PubMed  Google Scholar 

  26. Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG, Westphal H, Saarma M, Sariola H. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.

    Article  CAS  PubMed  Google Scholar 

  27. Airaksinen MS, Saarma M. The GDNF family: signaling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3(5):383–94.

    Article  CAS  PubMed  Google Scholar 

  28. Widenfalk J, Parvinen M, Lindqvist E, Olson L, Neurturin RET. GFRalpha-1 and GFRalpha-2, but not GFRalpha-3, mRNA are expressed in mice gonads. Cell Tissue Res. 2000;299(3):409–15.

    CAS  PubMed  Google Scholar 

  29. Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod. 2006;74(2):314–21.

    Article  CAS  PubMed  Google Scholar 

  30. Aponte PM, Soda T, Teerds KJ, Mizrak SC, van de Kant HJ. Propagation of bovine spermatogonial stem cells in vitro. Reproduction. 2008;136(5):543–57.

    Article  CAS  PubMed  Google Scholar 

  31. Aponte PM, Soda T, van de Kant HJ. Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology. 2006;65(9):1828–47.

    Article  CAS  PubMed  Google Scholar 

  32. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development. 2012;139(10):1734–43.

    Article  CAS  PubMed  Google Scholar 

  33. Imamura M, Lin ZYC, Okano H. Cell-intrinsic reprogramming capability: gain or loss of pluripotency in germ cells. Reprod Med Biol. 2013;12:1–14.

    Article  Google Scholar 

  34. Li J, Wang G, Wang C, Zhao Y, Zhang H. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation. 2007;75(4):299–307.

    Article  CAS  PubMed  Google Scholar 

  35. Eiselleova L, Matulka K, Kriz V, Kunova M, Schmidtova Z. A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells. 2009;27(8):1847–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wu X, Oatley JM, Oatley MJ, Kaucher AV, Avarbock MR. The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod. 2010;82(6):1103–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Goel S, Fujihara M, Minami N, Yamada M, Imai H. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction. 2008;135(6):785–95.

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expr Patterns. 2005;5(5):639–46.

    Article  CAS  PubMed  Google Scholar 

  39. Dolci S, Pellegrini M, Di Agostino S, Geremia R, Rossi P. Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. J Biol Chem. 2001;276:40225–33.

    Article  CAS  PubMed  Google Scholar 

  40. Beumer TL, Roepers-Gajadien HL, Gademan IS, Kal HB, de Rooij DG. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod. 2000;63(6):1893–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. K. Konishi and Y. Hashiyada (National Livestock Breeding Centre), Dr. Y. Hoshino (Gifu Prefectural Livestock Research Institute) and H. Yoshioka, Y. Nagase, S. Kitamura, E. Itoyama and H. Murakami of Livestock Farm (Graduate School of Agriculture, Kyoto University) for providing bovine teste samples. This study was supported by a grant from the Japan Society for the Promotion of Science (JSPS) to MS and a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) to HI.

Conflict of interest

Mahesh Sahare, Ayagi Otomo, Kana Komatsu, Naojiro Minami, Masayasu Yamada, and Hiroshi Imai declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of animals were followed.

Human rights

This article does not contain any studies with human subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Imai.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahare, M., Otomo, A., Komatsu, K. et al. The role of signaling pathways on proliferation and self-renewal of cultured bovine primitive germ cells. Reprod Med Biol 14, 17–25 (2015). https://doi.org/10.1007/s12522-014-0189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-014-0189-x

Keywords

Navigation