Skip to main content
Log in

Stem/progenitor cells and the regeneration potentials in the human uterus

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

The human uterus is unique in that it possesses the tremendous regenerative capacity required for cyclical regeneration and remodeling throughout a woman’s reproductive life. Not only must the uterus rapidly enlarge to accommodate the developing fetus, the endometrium must also regenerate with each menstrual cycle. This plasticity of the reproductive system has recently been highlighted. My research group and collaborators showed that functional endometrial tissue could be regenerated from only a small number of singly dispersed human endometrial cells, transplanted beneath the kidney capsule of severely immunodeficient mice. This artificially generated endometrium resembles the natural endometrium, and contains human blood vessels that invade the mouse kidney parenchyma. Additionally, it mimics normal hormone-dependent changes including proliferation, differentiation, and tissue breakdown (menstruation). The regenerative capacity of endometrial cells makes them ideal candidates for tissue reconstitution, angiogenesis, and human–mouse chimeric vessel formation. The smooth muscle cells of the uterus (myometrium) share the plasticity of the endometrium. This is evidenced by their capacity for dramatic, repeatable, pregnancy-induced enlargement. Regeneration and remodeling in the female reproductive tract allude to the existence of endometrial and myometrial stem cell systems. We have recently isolated candidate populations of adult stem cells from both the human endometrium and myometrium. Characterization of these endometrial and myometrial cells, along with the study of the mechanisms controlling their regeneration, will improve the understanding of the physiology and pathophysiology of the female reproductive tract. Furthermore, myometrial and endometrial stem-like cells might also represent a novel source of biological material that could be used for the reconstruction of not only the human uterus but other organs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453:322–9.

    Article  CAS  PubMed  Google Scholar 

  2. Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev. 2008;22:1987–97.

    Article  CAS  PubMed  Google Scholar 

  3. Gargett CE. Uterine stem cells: what is the evidence? Hum Reprod Update. 2007;13:87–101.

    Article  CAS  PubMed  Google Scholar 

  4. Ono M, Maruyama T, Yoshimura Y. Regeneration and adult stem cells in the human female reproductive tract. Stem Cells Cloning Adv Appl. 2008;1:23–9.

    CAS  Google Scholar 

  5. Maruyama T, Yoshimura Y. Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium. Endocr J. 2008;55:795–810.

    Article  CAS  PubMed  Google Scholar 

  6. Padykula HA, Coles LG, Okulicz WC, Rapaport SI, McCracken JA, King NW Jr, et al. The basalis of the primate endometrium: a bifunctional germinal compartment. Biol Reprod. 1989;40:681–90.

    Article  CAS  PubMed  Google Scholar 

  7. Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells. Biol Reprod. 2004;70:1738–50.

    Article  CAS  PubMed  Google Scholar 

  8. Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27:17–46.

    Article  CAS  PubMed  Google Scholar 

  9. Strauss III JF, Lessey BA: The structure, function, and evaluation of the female reproductive tract. In: Strauss III JF, Barbieri RL, editors. Yen and Jaffe’s Reproductive Endocrinology. Physiology, Pathophysiology, and Clinical Management, 5th ed. Amsterdam: Elsevier Saunders; 2004. p. 255–305.

  10. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod. 1998;13:1686–90.

    Article  CAS  PubMed  Google Scholar 

  11. Fujishita A, Hasuo A, Khan KN, Masuzaki H, Nakashima H, Ishimaru T. Immunohistochemical study of angiogenic factors in endometrium and endometriosis. Gynecol Obstet Invest. 1999;48(Suppl 1):36–44.

    Article  CAS  PubMed  Google Scholar 

  12. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364:1789–99.

    Article  PubMed  Google Scholar 

  13. Bulun SE. Endometriosis. N Engl J Med. 2009;360:268–79.

    Article  CAS  PubMed  Google Scholar 

  14. Zamah NM, Dodson MG, Stephens LC, Buttram VC Jr, Besch PK, Kaufman RH. Transplantation of normal and ectopic human endometrial tissue into athymic nude mice. Am J Obstet Gynecol. 1984;149:591–7.

    CAS  PubMed  Google Scholar 

  15. Bergqvist A, Jeppsson S, Kullander S, Ljungberg O. Human uterine endometrium and endometriotic tissue transplanted into nude mice. Morphologic effects of various steroid hormones. Am J Pathol. 1985;121:337–41.

    CAS  PubMed  Google Scholar 

  16. Zaino RJ, Satyaswaroop PG, Mortel R. Histologic response of normal human endometrium to steroid hormones in athymic mice. Hum Pathol. 1985;16:867–72.

    Article  CAS  PubMed  Google Scholar 

  17. Aoki D, Katsuki Y, Shimizu A, Kakinuma C, Nozawa S. Successful heterotransplantation of human endometrium in SCID mice. Obstet Gynecol. 1994;83:220–8.

    CAS  PubMed  Google Scholar 

  18. Bruner KL, Matrisian LM, Rodgers WH, Gorstein F, Osteen KG. Suppression of matrix metalloproteinases inhibits establishment of ectopic lesions by human endometrium in nude mice. J Clin Invest. 1997;99:2851–7.

    Article  CAS  PubMed  Google Scholar 

  19. Awwad JT, Sayegh RA, Tao XJ, Hassan T, Awwad ST, Isaacson K. The SCID mouse: an experimental model for endometriosis. Hum Reprod. 1999;14:3107–11.

    Article  CAS  PubMed  Google Scholar 

  20. Tabibzadeh S, Miller S, Dodson WC, Satyaswaroop PG. An experimental model for the endometriosis in athymic mice. Front Biosci. 1999;4:C4–9.

    Article  CAS  PubMed  Google Scholar 

  21. Grümmer R, Schwarzer F, Bainczyk K, Hess-Stumpp H, Regidor PA, Schindler AE, et al. Peritoneal endometriosis: validation of an in vivo model. Hum Reprod. 2001;16:1736–43.

    Article  PubMed  Google Scholar 

  22. Greenberg LH, Slayden OD. Human endometriotic xenografts in immunodeficient RAG-2/gamma(c)KO mice. Am J Obstet Gynecol. 2004;190:1788–95.

    Article  CAS  PubMed  Google Scholar 

  23. Fortin M, Lepine M, Merlen Y, Thibeault I, Rancourt C, Gosselin D, et al. Quantitative assessment of human endometriotic tissue maintenance and regression in a noninvasive mouse model of endometriosis. Mol Ther. 2004;9:540–7.

    Article  CAS  PubMed  Google Scholar 

  24. Matsuura-Sawada R, Murakami T, Ozawa Y, Nabeshima H, Akahira J, Sato Y, et al. Reproduction of menstrual changes in transplanted human endometrial tissue in immunodeficient mice. Hum Reprod. 2005;20:1477–84.

    Article  PubMed  Google Scholar 

  25. Masuda H, Maruyama T, Hiratsu E, Yamane J, Iwanami A, Nagashima T, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/γ nullc immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104:1925–30.

    Article  CAS  PubMed  Google Scholar 

  26. Gazvani R, Templeton A. Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction. 2002;123:217–26.

    Article  CAS  PubMed  Google Scholar 

  27. Fujimoto J, Sakaguchi H, Hirose R, Wen H, Tamaya T. Angiogenesis in endometriosis and angiogenic factors. Gynecol Obstet Invest. 1999;48(Suppl 1):14–20.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci. 2002;955:89–100. discussion 118, 396–406.

    Article  CAS  PubMed  Google Scholar 

  29. Nisolle M, Casanas-Roux F, Donnez J. Early-stage endometriosis: adhesion and growth of human menstrual endometrium in nude mice. Fertil Steril. 2000;74:306–12.

    Article  CAS  PubMed  Google Scholar 

  30. Bruner-Tran KL, Webster-Clair D, Osteen KG. Experimental endometriosis: the nude mouse as a xenographic host. Ann N Y Acad Sci. 2002;955:328–39.

    Article  PubMed  Google Scholar 

  31. Hull ML, Charnock-Jones DS, Chan CL, Bruner-Tran KL, Osteen KG, Tom BD, et al. Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab. 2003;88:2889–99.

    Article  CAS  PubMed  Google Scholar 

  32. Eggermont J, Donnez J, Casanas-Roux F, Scholtes H, Van Langendonckt A. Time course of pelvic endometriotic lesion revascularization in a nude mouse model. Fertil Steril. 2005;84:492–9.

    Article  PubMed  Google Scholar 

  33. St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, et al. Genes expressed in human tumor endothelium. Science. 2000;289:1197–202.

    Article  CAS  PubMed  Google Scholar 

  34. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J. 2003;17:1159–61.

    CAS  PubMed  Google Scholar 

  35. Dabrosin C, Gyorffy S, Margetts P, Ross C, Gauldie J. Therapeutic effect of angiostatin gene transfer in a murine model of endometriosis. Am J Pathol. 2002;161:909–18.

    CAS  PubMed  Google Scholar 

  36. Nap AW, Griffioen AW, Dunselman GA, Bouma-Ter Steege JC, Thijssen VL, Evers JL, et al. Antiangiogenesis therapy for endometriosis. J Clin Endocrinol Metab. 2004;89:1089–95.

    Article  CAS  PubMed  Google Scholar 

  37. Seli E, Arici A. Endometriosis: interaction of immune and endocrine systems. Semin Reprod Med. 2003;21:135–44.

    Article  CAS  PubMed  Google Scholar 

  38. Yao L, Sgadari C, Furuke K, Bloom ET, Teruya-Feldstein J, Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood. 1999;93:1612–21.

    CAS  PubMed  Google Scholar 

  39. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/γ nullc mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.

    Article  CAS  PubMed  Google Scholar 

  40. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng. 2002;4:235–60.

    Article  CAS  PubMed  Google Scholar 

  41. Masuda H, Okano H, Maruyama T, Yoshimura Y, Okano H, Matsuzaki Y. In vivo imaging in humanized mice. Curr Top Microbiol Immunol. 2008;324:179–97.

    Article  CAS  PubMed  Google Scholar 

  42. Padykula HA. Regeneration in the primate uterus: the role of stem cells. Ann N Y Acad Sci. 1991;622:47–56.

    Article  CAS  PubMed  Google Scholar 

  43. Prianishnikov VA. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception. 1978;18:213–23.

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka M, Kyo S, Kanaya T, Yatabe N, Nakamura M, Maida Y, et al. Evidence of the monoclonal composition of human endometrial epithelial glands and mosaic pattern of clonal distribution in luminal epithelium. Am J Pathol. 2003;163:295–301.

    PubMed  Google Scholar 

  45. Brenner RM, Slayden OD, Rodgers WH, Critchley HO, Carroll R, Nie XJ, et al. Immunocytochemical assessment of mitotic activity with an antibody to phosphorylated histone H3 in the macaque and human endometrium. Hum Reprod. 2003;18:1185–93.

    Article  CAS  PubMed  Google Scholar 

  46. van Os R, Kamminga LM, de Haan G. Stem cell assays: something old, something new, something borrowed. Stem Cells. 2004;22:1181–90.

    Article  PubMed  Google Scholar 

  47. Schwab KE, Chan RW, Gargett CE. Putative stem cell activity of human endometrial epithelial and stromal cells during the menstrual cycle. Fertil Steril. 2005;84(Suppl 2):1124–30.

    Article  CAS  PubMed  Google Scholar 

  48. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22:2903–11.

    Article  CAS  PubMed  Google Scholar 

  49. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996;183:1797–806.

    Article  CAS  PubMed  Google Scholar 

  50. Challen GA, Little MH. A side order of stem cells: the SP phenotype. Stem Cells. 2006;24:3–12.

    Article  PubMed  Google Scholar 

  51. Kato K, Yoshimoto M, Kato K, Adachi S, Yamayoshi A, Arima T, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22:1214–23.

    Article  CAS  PubMed  Google Scholar 

  52. Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, et al. Characterization of clonogenic stromal cells isolated from human endometrium. Reproduction. 2008;135:551–8.

    Article  CAS  PubMed  Google Scholar 

  53. Kim JY, Tavare S, Shibata D. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions. Proc Natl Acad Sci USA. 2005;102:17739–44.

    Article  CAS  PubMed  Google Scholar 

  54. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292:81–5.

    Article  CAS  PubMed  Google Scholar 

  55. Ramsey EM. Anatomy of the human uterus. In: Chard T, Grudzinskas JG, editors. The uterus. Cambridge: Cambridge University Press; 1994. p. 18–40.

    Google Scholar 

  56. Shynlova O, Oldenhof A, Dorogin A, Xu Q, Mu J, Nashman N, et al. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod. 2006;74:839–49.

    Article  CAS  PubMed  Google Scholar 

  57. Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci USA. 2007;104:18700–5.

    Article  CAS  PubMed  Google Scholar 

  58. Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol. 2005;288:276–83.

    Article  CAS  PubMed  Google Scholar 

  59. Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, et al. Adult mouse myometrial label-retaining cells divide in response to gonadotropin stimulation. Stem Cells. 2007;25:1317–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank members of my research group, Yasunori Yoshimura, Hideyuki Okano, and Yumi Matsuzaki for their generous assistance and collaboration with this project. This study was supported, in part, by Grants-in-Aid from the Japan Society for the Promotion of Science (to T.M., Y.Y), by a National Grant-in-Aid for the Establishment of High-Tech Research Center in a Private University (to T.M.), and by a Grant-in-Aid from the 21st Century Centers of Excellence program of the Ministry of Education, Science, and Culture of Japan at Keio University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Maruyama.

About this article

Cite this article

Maruyama, T. Stem/progenitor cells and the regeneration potentials in the human uterus. Reprod Med Biol 9, 9–16 (2010). https://doi.org/10.1007/s12522-009-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12522-009-0032-y

Keywords

Navigation