Skip to main content
Log in

Pediatric-specific reference intervals in a nationally representative sample of Iranian children and adolescents: the CASPIAN-III study

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

This study aimed to determine for the first time the age- and gender-specific reference intervals for biomarkers of bone, metabolism, nutrition, and obesity in a nationally representative sample of the Iranian children and adolescents.

Methods

We assessed the data of blood samples obtained from healthy Iranian children and adolescents, aged 7 to 19 years. The reference intervals of glucose, lipid profile, liver enzymes, zinc, copper, chromium, magnesium, and 25-hydroxy vitamin D [25(OH)D] were determined according to the Clinical & Laboratory Standards Institute C28-A3 guidelines. The reference intervals were partitioned using the Harris–Boyd method according to age and gender.

Results

The study population consisted of 4800 school students (50% boys, mean age of 13.8 years). Twelve chemistry analyses were partitioned by age and gender, displaying the range of results between the 2.5th to 97.5th percentiles. Significant differences existed only between boys and girls at 18 to 19 years of age for low density lipoprotein-cholesterol. 25(OH)D had the only reference interval that was similar to all age groups and both sexes.

Conclusions

This study presented the first national database of reference intervals for a number of biochemical markers in Iranian children and adolescents. It is the first report of its kind from the Middle East and North Africa. The findings underscore the importance of providing reference intervals in different ethnicities and in various regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tamimi W, Tamim H, Felimban N, Almutair A, Altwaijri Y, Alalwan I. Age-and gender-specific reference intervals for serum lipid levels (measured with an Advia 1650 analyzer) in school children. Pediatr Int 2011;53:814–819.

    Article  CAS  PubMed  Google Scholar 

  2. Lockitch G, Halstead AC, Albersheim S, MacCallum C, Quigley G. Age-and sex-specific pediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer. Clin Chem 1988;34:1622–1625.

    CAS  PubMed  Google Scholar 

  3. Soldin OP, Jang M, Guo T, Soldin SJ. Pediatric reference intervals for free thyroxine and free triiodothyronine. Thyroid 2009;19:699–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jung B, Adeli K. Clinical laboratory reference intervals in pediatrics: the CALIPER initiative. Clin Biochem 2009;42:1589–1595.

    Article  PubMed  Google Scholar 

  5. Adeli K. Closing the gaps in pediatric reference intervals: the CALIPER initiative. Clin Biochem 2011;44:480–482.

    Article  PubMed  Google Scholar 

  6. Schnabl K, Chan MK, Gong Y, Adeli K. Closing the gaps in paediatric reference intervals: the CALIPER initiative. Clin Biochem Rev 2008;29:89–96.

    PubMed  PubMed Central  Google Scholar 

  7. Soldin SJ, Wong EC, Brugnara C, Soldin OP. Pediatric reference intervals, 7th ed. Washington DC: American Association for Clinical Chemistry, 2011.

    Google Scholar 

  8. Pysher TJ, Bach PR, Geaghan SM, Hamilton MS, Laposata M, Lockitch G, et al. Teaching pediatric laboratory medicine to pathology residents. Arch Pathol Lab Med 2006;130:1031–1038.

    PubMed  Google Scholar 

  9. Colantonio DA, Kyriakopoulou L, Chan MK, Daly CH, Brinc D, Venner AA, et al. Closing the gaps in pediatric laboratory reference intervals: a CALIPER database of 40 biochemical markers in a healthy and multiethnic population of children. Clin Chem 2012;58:854–868.

    Article  CAS  PubMed  Google Scholar 

  10. Konforte D, Shea JL, Kyriakopoulou L, Colantonio D, Cohen AH, Shaw J, et al. Complex biological pattern of fertility hormones in children and adolescents: a study of healthy children from the CALIPER cohort and establishment of pediatric reference intervals. Clin Chem 2013;59:1215–1227.

    Article  CAS  PubMed  Google Scholar 

  11. Kelishadi R, Majdzadeh R, Motlagh ME, Heshmat R, Aminaee T, Ardalan G, et al. Development and evaluation of a questionnaire for assessment of determinants of weight disorders among children and adolescents: the Caspian-IV study. Int J Prev Med 2012;3:699–705.

    PubMed  PubMed Central  Google Scholar 

  12. Mansourian M, Marateb HR, Kelishadi R, Motlagh ME, Aminaee T, Taslimi M, et al. First growth curves based on the World Health Organization reference in a Nationally-Representative Sample of Pediatric Population in the Middle East and North Africa (MENA): the CASPIAN-III study. BMC Pediatr 2012;12:149.

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Wilde JA, van Dommelen P, Middelkoop BJ. Appropriate body mass index cut-offs to determine thinness, overweight and obesity in South Asian children in the Netherlands. PLoS One 2013;8:e82822.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Saedisomeolia A, Taheri E, Djalali M, Moghadam AM, Qorbani M. Association between serum level of vitamin D and lipid profiles in type 2 diabetic patients in Iran. J Diabetes Metab Disord 2014;13:7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Horowitz GL, Altaie S, Boyd JC, Ceriotti F, Garg U, Horn P, et al. Defining, establishing, and verifying reference intervals in the clinical laboratory. Approved Guideline 3rd ed. CLSI document C28-A3. Wayne, PA: Clinical and Laboratory Standards Institute, 2008.

    Google Scholar 

  16. Hubert M, Vandervieren E. An adjusted boxplot for skewed distributions. Comput Stat Data An 2008;52:5186–5201.

    Article  Google Scholar 

  17. Fuentes-Arderiu X, Ferré-Masferrer M, Alvarez-Funes V. Harris & Boyd’s test for partitioning the reference values. Eur J Clin Chem Clin Biochem 1997;35:733.

    CAS  PubMed  Google Scholar 

  18. Linnet K. Nonparametric estimation of reference intervals by simple and bootstrap-based procedures. Clin Chem 2000;46:867–869.

    CAS  PubMed  Google Scholar 

  19. Horn PS, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem 1998;44:622–631.

    CAS  PubMed  Google Scholar 

  20. Horn PS, Pesce AJ. Reference intervals: an update. Clin Chim Acta 2003;334:5–23.

    Article  CAS  PubMed  Google Scholar 

  21. Andropoulos DB. Appendix B: pediatric normal laboratory values. In: Gregory GA, Andropoulos DB, eds. Gregory’s pediatric anesthesia. West Sussex: Wiley-Blackwell, 2012: 1300–1314.

    Google Scholar 

  22. Bacha F, Saad R, Gungor N, Arslanian SA. Are obesity-related metabolic risk factors modulated by the degree of insulin resistance in adolescents? Diabetes Care 2006;29:1599–1604.

    Article  PubMed  Google Scholar 

  23. Horowitz GL. Estimating reference intervals. Am J Clin Pathol 2010;133:175–177.

    Article  PubMed  Google Scholar 

  24. Horn PS, Pesce AJ. Reference intervals: a user’s guide. Washington DC: American Association for Clinical Chemistry, 2005.

    Google Scholar 

  25. Chan MK, Seiden-Long I, Aytekin M, Quinn F, Ravalico T, Ambruster D, et al. Canadian Laboratory Initiative on Pediatric Reference Interval Database (CALIPER): pediatric reference intervals for an integrated clinical chemistry and immunoassay analyzer, Abbott ARCHITECT ci8200. Clin Biochem 2009;42:885–891.

    Article  CAS  PubMed  Google Scholar 

  26. Neal WA. Disorders of lipoprotein metabolism and transport. In: Kliegman RM, Behrman RE, Jenson HB, Stanton BF, eds. Nelson Text book of Pediatrics, 18th ed. Philadelphia: Saunders, 2007: 580–593.

    Google Scholar 

  27. Kelishadi R, Ardalan G, Gheiratmand R, Adeli K, Delavari A, Majdzadeh R, et al. Paediatric metabolic syndrome and associated anthropometric indices: the CASPIAN study. Acta Paediatr 2006;95:1625–1634.

    Article  PubMed  Google Scholar 

  28. Schwandt P, Kelishadi R, Haas GM. Ethnic disparities of the metabolic syndrome in population-based samples of german and Iranian adolescents. Metab Syndr Relat Disord 2010;8:189–192.

    Article  PubMed  Google Scholar 

  29. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet 2007;369:2059–2061.

    Article  PubMed  Google Scholar 

  30. Schwandt P, Kelishadi R, Ribeiro RQ, Haas GM, Poursafa P. A three-country study on the components of the metabolic syndrome in youths: the BIG study. Int J Pediatr Obes 2010;5:334–341.

    Article  PubMed  Google Scholar 

  31. Fakhrzadeh H, Ebrahimpour P, Pourebrahim R, Heshmat R, Larijani B. Metabolic syndrome and its associated risk factors in healthy adults: a population-based study in Iran. Metab Syndr Relat Disord 2006;4:28–34.

    Article  CAS  PubMed  Google Scholar 

  32. Esmaillzadeh A, Mirmiran P, Azadbakht L, Etemadi A, Azizi F. High prevalence of the metabolic syndrome in Iranian adolescents. Obesity (Silver Spring) 2006;14:377–382.

    Article  Google Scholar 

  33. Gündogan K, Bayram F, Capak M, Tanriverdi F, Karaman A, Ozturk A, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord 2009;7:427–434.

    Article  PubMed  Google Scholar 

  34. Kelishadi R, Gouya MM, Adeli K, Ardalan G, Gheiratmand R, Majdzadeh R, et al. Factors associated with the metabolic syndrome in a national sample of youths: CASPIAN study. Nutr Metab Cardiovasc Dis 2008;18:461–470.

    Article  PubMed  Google Scholar 

  35. Gannagé-Yared MH, Chemali R, Yaacoub N, Halaby G. Hypovitaminosis D in a sunny country: relation to lifestyle and bone markers. J Bone Miner Res 2000;15:1856–1862.

    Article  PubMed  Google Scholar 

  36. Ghasemi A, Zahediasl S, Hosseini-Esfahani F, Syedmoradi L, Azizi F. Pediatric reference values for serum zinc concentration in Iranian subjects and an assessment of their dietary zinc intakes. Clin Biochem 2012;45:1254–1256.

    Article  CAS  PubMed  Google Scholar 

  37. Lin CN, Wilson A, Church BB, Ehman S, Roberts WL, McMillin GA. Pediatric reference intervals for serum copper and zinc. Clin Chim Acta 2012;413:612–615.

    Article  CAS  PubMed  Google Scholar 

  38. Whittaker P. Iron and zinc interactions in humans. Am J Clin Nutr 1998;68 Suppl 2:442S-446S.

    Google Scholar 

  39. Rahmani K, Djazayery A, Habibi MI, Heidari H, Dorosti-Motlagh AR, Pourshahriari M, et al. Effects of daily milk supplementation on improving the physical and mental function as well as school performance among children: results from a school feeding program. J Res Med Sci 2011;16:469–476.

    PubMed  PubMed Central  Google Scholar 

  40. Azizi F, Rahmani M, Madjid M, Allahverdian S, Ghanbili J, Ghanbarian A, et al. Serum lipid levels in an Iranian population of children and adolescents: Tehran lipid and glucose study. Eur J Epidemiol 2001;17:281–288.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Mansourian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelishadi, R., Marateb, H.R., Mansourian, M. et al. Pediatric-specific reference intervals in a nationally representative sample of Iranian children and adolescents: the CASPIAN-III study. World J Pediatr 12, 335–342 (2016). https://doi.org/10.1007/s12519-015-0065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-015-0065-8

Key words

Navigation