Skip to main content
Log in

The genetics of inflammatory bowel disease: diagnostic and therapeutic implications

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The genetics of inflammatory bowel diseases (IBD) has brought new insight into the spectrum of disease phenotypes that are collectively labeled as either Crohn’s disease or ulcerative colitis. In concert with the pharmacogenomics of drug therapy, it has led clinicians to develop the notion of a more tailored approach to therapy.

Data sources

Articles were searched from PubMed (1995–2010) with key words “inflammatory bowel diseases”, “Genetics”, “pharmacogenomics”.

Results

Among all the putative susceptibility loci, the NOD2 gene has been the most studied and linked to an aggressive form of stricturing and perforating disease of the ileum. Other potential gene polymorphisms, including those encoding for the interleukin-23 receptor, have lent themselves to the recent development of potential novel immunosuppressive therapies. While the linkage of a number of autophagy genes with either Crohn’s disease or ulcerative colitis has provided insight into the innate adaptive immune pathway’s response to commensual intestinal bacteria. Pharmacogenetic polymorphisms of azathioprine metabolism have been shown to predict toxicity to anti-metabolite therapy. Patients with absent thiopurine methyl transferase enzyme activity are at risk for irreversible bone marrow suppression, and are not considered good candidates for either 6-mercaptopurine (6-MP) or azathioprine therapy.

Conclusions

Ultimately, the correlation between these genotypes and clinical phenotype of disease will inevitably lead to an improved understanding of disease natural history and a more tailored approach to therapy. Although there is ongoing debate as to whether these inherent differences in enzyme activity can predict responsiveness to anti-metabolite therapy, some gastroenterologists do find value in 6-MP metabolite testing as a means of monitoring patient compliance and tailoring the dose of anti-metabolite therapy based on a perceived therapeutic window. In the future, patients with IBD will ultimately be categorized based on their genomic imprint to allow for a better delineation of disease phenotype. Furthermore, the application pharmacogenomics of drug therapy into clinical practice will be pivotal in maximizing treatment response while avoiding untoward side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mendeloff AI, Calkins BM. The epidemiology of idiopathic inflammatory bowel disease. In: Kirsner JB, Shorter RG, eds. Inflammatory Bowel Disease. Philadelphia: Lea & Febiger, 1988: 3–34.

    Google Scholar 

  2. Mendeloff AI. The epidemiology of Inflammatory Bowel Disease. Clin Gastroenterol 1980;9:258.

    Google Scholar 

  3. Satsangi J, Jewell DP, Rosenberg WM, Bell JI. Genetics of inflammatory bowel disease. Gut 1994;35:696–700.

    Article  CAS  PubMed  Google Scholar 

  4. Yang H, McElree C, Roth MP, Shanahan F, Targan SR, Rotter JI. Familial empirical risks for inflammatory bowel disease: differences between Jews and non-Jews. Gut 1993;34:517–524.

    Article  CAS  PubMed  Google Scholar 

  5. Thompson NP, Driscoll R, Pounder RE, Wakefield AJ. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ 1996;312:95–96.

    CAS  PubMed  Google Scholar 

  6. Mcbride JA, King MJ, Baikie AG, Crean GP, Sircus W. Ankylosing spondylitis and chronic inflammatory bowel diseases of the intestines. Br Med J 1963;2:483–486.

    Article  CAS  PubMed  Google Scholar 

  7. Price WH. A high incidence of chronic inflammatory bowel disease in patients with Turner’s syndrome. J Med Genet 1979;16:263–266.

    Article  CAS  PubMed  Google Scholar 

  8. Bennett RA, Rubin PH, Present DH. Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology 1991;100:1638–1643.

    CAS  PubMed  Google Scholar 

  9. Hugot JP, Laurent-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Beaugerie L, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996;379:821–823.

    Article  CAS  PubMed  Google Scholar 

  10. Ohmen JD, Yang HY, Yamamoto KK, Zhao HY, Ma Y, Bentley LG, et al. Susceptibility locus for inflammatory bowel disease on chromosome 16 has a role in Crohn’s disease, but not in ulcerative colitis. Hum Mol Genet 1996;5:1679–1683.

    Article  CAS  PubMed  Google Scholar 

  11. Cho JH, Fu Y, Kirschner B. Hanauer SB. Confirmation of susceptibility locus IBD 1 for Crohn’s disease on chromosome 16. Gastroenterology 1997;112:A948.

    Google Scholar 

  12. Cavanaugh JA, Callen DF, Wilson SR, Stanford PM, Sraml ME, Gorska M, et al. Analysis of Australian Crohn’s disease pedigrees refines the localization for susceptibility to inflammatory bowel disease on chromosome 16. Ann Hum Genet 1998;62:291–298.

    Article  CAS  PubMed  Google Scholar 

  13. Hampe J, Wienker T, Nurnberg P, Schreiber S. Mapping genes for polygenic disorders: considerations for study design in the complex trait in inflammatory bowel disease. Hum Hered 2000;50:91–101.

    Article  CAS  PubMed  Google Scholar 

  14. Hofmeister A, Neibergs HL, Pokorny RM, Galandiuk S. The natural resistance-associated macrophage protein gene is associated with Crohn’s disease. Surgery 1997;122:173–178.

    Article  CAS  PubMed  Google Scholar 

  15. Brant SR, Panhuysen CI, Bailey-Wilson JE. Rohal PM, Lee S, Mann J, et al. Linkage heterogeneity for the IBD 1 locus in Crohn’s disease pedigrees by disease onset and severity. Gastroenterology 2000;119:1483–1490.

    Article  CAS  PubMed  Google Scholar 

  16. Duerr RH, Neigut DA. Molecularly defined HLA-DR2 alleles in ulcerative colitis and an antineutrophil cytoplasmic antibody-positive subgroup. Gastroenterology 1995;108:423–427.

    Article  CAS  PubMed  Google Scholar 

  17. Curran ME, Lau KF, Hampe J, Schreiber S, Bridger S, Macpherson AJ, et al. Genetic analysis of inflammatory bowel disease in a large European cohort supports linkage to chromosome 12 and 16. Gastroenterology 1998;115:1066–1071.

    Article  CAS  PubMed  Google Scholar 

  18. Hampe J, Grebe J, Nikolaus S, Solberg C, Croucher PJ, Mascheretti S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet 2002;359:1661–1665.

    Article  CAS  PubMed  Google Scholar 

  19. Lesage S, Zouali H, Cézard JP, the EPWG-IBD group, Colombel JF, the EPIMAD group, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002;70:845–857.

    Article  CAS  PubMed  Google Scholar 

  20. Blumberg RS, Strober W. Prospects for research in inflammatory bowel disease. JAMA 2001;285:643–647.

    Article  CAS  PubMed  Google Scholar 

  21. Kugathasan S, Collins N, Maresso K, Hoffmann RG, Stephens M, Werlin SL, et al. CARD15 gene mutations and risk for early surgery in pediatric-onset Crohn’s disease. Clin Gastroenterol Hepatol 2004;2:1003–1009.

    Article  CAS  PubMed  Google Scholar 

  22. Chamaillard M, Iacob R, Desreumaux P, Colombel JF. Advances and perspectives in the genetics of inflammatory bowel diseases. Clin Gastroenterol Hepatol 2006;4:143–151.

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731–734.

    Article  CAS  PubMed  Google Scholar 

  24. Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM, et al. Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am J Hum Genet 2000;66:1863–1870.

    Article  CAS  PubMed  Google Scholar 

  25. Friedrichs F, Brescianini S, Annese V, Latiano A, Berger K, Kugathasan S, et al. Evidence of transmission ratio distortion of DLG5 R30Q variant in general and implication of an association with Crohn disease in men. Hum Genet 2006;119:305–311.

    Article  PubMed  Google Scholar 

  26. Török HP, Glas J, Tonenchi L, Mussack T, Folwaczny C. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 2004;112:85–91.

    Article  PubMed  Google Scholar 

  27. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000;68:7010–7017.

    Article  CAS  PubMed  Google Scholar 

  28. Franchimont D, Vermeire S, El Housni H, Pierik M, Van Steen K, Gustot T, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 2004;53:987–992.

    Article  CAS  PubMed  Google Scholar 

  29. Török HP, Glas J, Tonenchi L, Bruennler G, Folwaczny M, Folwaczny C. Crohn’s disease is associated with a toll-like receptor-9 polymorphism. Gastroenterology 2004;127:365–366.

    Article  PubMed  Google Scholar 

  30. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461–1463.

    Article  CAS  PubMed  Google Scholar 

  31. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007;39:207–211.

    Article  CAS  PubMed  Google Scholar 

  32. Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology 2003;124:521–536.

    Article  CAS  PubMed  Google Scholar 

  33. Lazaridis KN, Petersen GM. Genomics, genetic epidemiology, and genomic medicine. Clin Gastroenterol Hepatol 2005;3:320–328.

    Article  CAS  PubMed  Google Scholar 

  34. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007;39:830–832.

    Article  CAS  PubMed  Google Scholar 

  35. Collazo CM, Yap GS, Sempowski GD, Lusby KC, Tessarollo L, Woude GF, et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. J Exp Med 2001;194:181–188.

    Article  CAS  PubMed  Google Scholar 

  36. Shanahan F, O’Mahony J. The mycobacteria story in Crohn’s disease. Am J Gastroenterol 2005;100:1537–1538.

    Article  PubMed  Google Scholar 

  37. Gurbindo C, Seidman EG. Gastrointestinal manifestations of primary immunodeficiency disorders. In: Walker WA, Durie PR, Hamilton JR, Walker-Smith JA, Watkins B, eds. Pediatric Gastrointestinal Disease Pathophysiology, Diagnosis, Management, 2nd ed. St. Louis: Mosby CV, 1996: 585–605.

    Google Scholar 

  38. D’Agata ID, Vanounou T, Seidman E. Mesalamine in pediatric inflammatory bowel disease: a 10-year experience. Inflamm Bowel Dis 1996;2:229–235.

    Article  Google Scholar 

  39. Shivananda S, Peña AS, Nap M, Weterman IT, Mayberry JF, Ruitenberg EJ, et al. Epidemiology of Crohn’s disease in Regio Leiden, The Netherlands. A population study from 1979 to 1983. Gastroenterology 1987;93:966–974.

    CAS  PubMed  Google Scholar 

  40. Seidman EG. Inflammatory Bowel disease. In: Roy CC, Silverman A, Alagille A, eds. Clinical Pediatric Gastroenterology, 4th ed. Mosby: Philadelphia, 1993.

    Google Scholar 

  41. Ekbom A, Adami HO, Helmick CG, Jonzon A, Zack MM. Perinatal risk factors for inflammatory bowel disease: a casecontrol study. Am J Epidemiol 1990;132:1111–1119.

    CAS  PubMed  Google Scholar 

  42. Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE. Crohn’s disease: pathogenesis and persistent measles virus infection. Gastroenterology 1995;108:911–916.

    Article  CAS  PubMed  Google Scholar 

  43. Ekbom A, Wakefield AJ, Zack M, Adami HO. Perinatal measles infection and subsequent Crohn’s disease. Lancet 1994;344:508–510.

    Article  CAS  PubMed  Google Scholar 

  44. Wakefield AJ, Pittilo RM, Sim R, Cosby SL, Stephenson JR, Dhillon AP, et al. Evidence of persistent measles virus infection in Crohn’s disease. J Med Virol 1993;39:345–353.

    Article  CAS  PubMed  Google Scholar 

  45. Lewin J, Dhillon AP, Sim R, Mazure G, Pounder RE, Wakefield AJ. Persistent measles virus infection of the intestine: confirmation by immunogold electron microscopy. Gut 1995;36:564–569.

    Article  CAS  PubMed  Google Scholar 

  46. Ekbom A, Wakefield AJ, Zack M, Adami HO. Perinatal measles infection and subsequent Crohn’s disease. Lancet 1994;344:508–510.

    Article  CAS  PubMed  Google Scholar 

  47. Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992;43:329–339.

    Article  CAS  PubMed  Google Scholar 

  48. Elion GB. The George Hitchings and Gertrude Elion Lecture. The pharmacology of azathioprine. Ann N Y Acad Sci 1993; 685:401–407.

    Article  CAS  Google Scholar 

  49. Van Os EC, Zins BJ, Sandborn WJ, Mays DC, Tremaine WJ, Mahoney DW, et al. Azathioprine pharmacokinetics after intravenous, oral, delayed release oral and rectal foam administration. Gut 1996;39:63–68.

    Article  PubMed  Google Scholar 

  50. Lennard L, Lilleyman JS. Variable mercaptopurine metabolism and treatment outcome in childhood lymphoblastic leukemia. J Clin Oncol 1989;7:1816–1823.

    CAS  PubMed  Google Scholar 

  51. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119:985–989.

    Article  CAS  PubMed  Google Scholar 

  52. Cuffari C, Théorêt Y, Latour S, Seidman G. 6-Mercaptopurine metabolism in Crohn’s disease: correlation with efficacy and toxicity. Gut 1996;39:401–406.

    Article  CAS  PubMed  Google Scholar 

  53. Dubinsky MC, Lamothe S, Yang HY, Targan SR, Sinnett D, Théorêt Y, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000;118:705–713.

    Article  CAS  PubMed  Google Scholar 

  54. Stevens T, Achkar JP, Easley K, Brzezinski A, Lashner B. Azathioprine formulation optimizes metabolite profile in inflammatory bowel disease. Aliment Pharmacol Ther 2004;20:601–606.

    Article  CAS  PubMed  Google Scholar 

  55. Cuffari C, Dassopoulos T, Turnbough L, Thompson RE, Bayless TM. Thiopurine methyltransferase activity influences clinical response to azathioprine in inflammatory bowel disease. Clin Gastroenterol Hepatol 2004;2:410–417.

    Article  CAS  PubMed  Google Scholar 

  56. Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut 2001;48:642–646.

    Article  CAS  PubMed  Google Scholar 

  57. Present DH, Meltzer SJ, Krumholz MP, Wolke A, Korelitz BI. 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 1989;111:641–649.

    CAS  PubMed  Google Scholar 

  58. Kirschner BS. Safety of azathioprine and 6-mercaptopurine in pediatric patients with inflammatory bowel disease. Gastroenterology 1998;115:813–821.

    Article  CAS  PubMed  Google Scholar 

  59. Black AJ, McLeod HL, Capell HA, Powrie RH, Matowe LK, Pritchard SC, et al. Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann Intern Med 1998;129:716–718.

    CAS  PubMed  Google Scholar 

  60. Bo J, Schrøder H, Kristinsson J, Madsen B, Szumlanski C, Weinshilboum R, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 1999;86:1080–1086.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Cuffari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuffari, C. The genetics of inflammatory bowel disease: diagnostic and therapeutic implications. World J Pediatr 6, 203–209 (2010). https://doi.org/10.1007/s12519-010-0219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-010-0219-7

Key words

Navigation