Skip to main content
Log in

Mycobacterium bovis bacillus Calmette-Guerin treated human cord blood monocyte-derived dendritic cells polarize naïve T cells into a tolerogenic phenotype in newborns

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

As one of the first infectious challenges of life, the impact of neonatal Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccination on the polarization of neonatal T helper subset has not been well defined.

Methods

We investigated the effect of BCG-treated cord blood (CB) dendritic cells (DCs) on naïve CD4+ T cells polarization compared with that of adult blood DCs.

Results

BCG-treated CB DCs had significantly lower expression of CD83 and a higher ratio of CD47/Fas than BCG-treated adult blood DCs. BCG induced significantly lower IL-12 but relatively higher IL-10 production from CB DCs than adult blood DCs. Moreover, in comparison with BCG-treated adult blood DCs, BCG-treated CB DCs induced higher IL-10 production and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression, and lower interferon-gamma (IFN-γ) production from naïve CD4+ T cells. On the other hand, lipopolysaccharide-treated CB DCs had similar capacity as prime naïve CD4+ T cells did to produce higher IFN-γ, lower IL-10 production, and CTLA-4 expression compared with their adult counterparts.

Conclusion

These results suggested that BCG-treated CB DCs might be semi-mature DCs which polarize naïve T cells into a tolerogenic T cell phenotype in newborns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Ann Rev Immunol 2000;18:767–811.

    Article  CAS  Google Scholar 

  2. Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 2008;19:41–52.

    Article  CAS  PubMed  Google Scholar 

  3. Verhasselt V, Buelens C, Willems F, De Groote D, Haeffner-Cavaillon N, Goldman M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol 1997;158:2919–2925.

    CAS  PubMed  Google Scholar 

  4. Lyakh LA, Koski GK, Telford W, Gress RE, Cohen PA, Rice NR. Bacterial lipopolysaccharide, TNF-alpha, and calcium ionophore under serum-free conditions promote rapid dendritic cell-like differentiation in CD14+ monocytes through distinct pathways that activate NK-kappa B. J Immunol 2000;165:3647–3655.

    CAS  PubMed  Google Scholar 

  5. Thurnher M, Ramoner R, Gastl G, Radmayr C, Bock G, Herold M, et al. Bacillus Calmette-Guerin mycobacteria stimulate human blood dendritic cells. Int J Cancer 1997;70:128–134.

    Article  CAS  PubMed  Google Scholar 

  6. Kim KD, Lee HG, Kim JK, Park SN, Choe IS, Choe YK, et al. Enhanced antigen-presenting activity and tumour necrosis factor-alpha-independent activation of dendritic cells following treatment with Mycobacterium bovis bacillus Calmette-Guerin. Immunology 1999;97:626–633.

    Article  CAS  PubMed  Google Scholar 

  7. Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002;23:445–449.

    Article  CAS  PubMed  Google Scholar 

  8. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Ann Rev Immunol 2003;21:685–711.

    Article  CAS  Google Scholar 

  9. Smits HH, de Jong EC, Wierenga EA, Kapsenberg ML. Different faces of regulatory DCs in homeostasis and immunity. Trends Immunol 2005;26:123–129.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson CB, Penix L, Weaver WM, Melvin A, Lewis DB. Ontogeny of T lymphocyte function in the neonate. Am J Reprod Immunol 1992;28:132–135.

    CAS  PubMed  Google Scholar 

  11. Liu E, Tu W, Law HK, Lau YL. Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br J Haematol 2001;113:240–246.

    Article  CAS  PubMed  Google Scholar 

  12. Liu E, Law HK, Lau YL. Tolerance associated with cord blood transplantation may depend on the state of host dendritic cells. Br J Haematol 2004;126:517–526.

    Article  PubMed  Google Scholar 

  13. Marchant A, Goetghebuer T, Ota MO, Wolfe I, Ceesay SJ, De Groote D, et al. Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol 1999;163:2249–2255.

    CAS  PubMed  Google Scholar 

  14. Martino A, Sacchi A, Sanarico N, Spadaro F, Ramoni C, Ciaramella A, et al. Dendritic cells derived from BCG-infected precursors induce Th2-like immune response. J Leuk Biol 2004;76:827–834.

    Article  CAS  Google Scholar 

  15. Liu E, Law HK, Lau YL. BCG promotes cord blood monocytederived dendritic cell maturation with nuclear Rel-B upregulation and cytosolic I kappa B alpha and beta degradation. Pediatr Res 2003;54:105–112.

    Article  CAS  PubMed  Google Scholar 

  16. Hochrein H, O’Keeffe M. Dendritic cell subsets and toll-like receptors. Handb Exp Pharmacol 2008;183:153–179.

    Article  CAS  PubMed  Google Scholar 

  17. Rescigno M, Piguet V, Valzasina B, Lens S, Zubler R, French L, et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1beta, and the production of interferon gamma in the absence of IL-12 during DC-T cell cognate interaction, a new role for Fas ligand in inflammatory responses. J Exp Med 2000;192:1661–1668.

    Article  CAS  PubMed  Google Scholar 

  18. Lindberg FP, Gresham HD, Schwarz E, Brown EJ. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 1993;123:485–496.

    Article  CAS  PubMed  Google Scholar 

  19. Demeure CE, Tanaka H, Mateo V, Rubio M, Delespesse G, Sarfati M. CD47 engagement inhibits cytokine production and maturation of human dendritic cells. J Immunol 2000;164:2193–2199.

    CAS  PubMed  Google Scholar 

  20. Lechmann M, Krooshoop DJ, Dudziak D, Kremmer E, Kuhnt C, Figdor CG, et al. The extracellular domain of CD83 inhibits dendritic cell-mediated T cell stimulation and binds to a ligand on dendritic cells. J Exp Med 2001;194:1813–1821.

    Article  CAS  PubMed  Google Scholar 

  21. Prazma CM, Tedder TF. Dendritic cell CD83: a therapeutic target or innocent bystander? Immunol Lett 2008;115:1–8.

    Article  CAS  PubMed  Google Scholar 

  22. Rescigno M, Granucci F, Citterio S, Foti M, Ricciardi-Castagnoli P. Coordinated events during bacteria-induced DC maturation. Immunol Today 1999;20:200–203.

    Article  CAS  PubMed  Google Scholar 

  23. de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Aït-Yahia S, et al. The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 1998;160:1666–1676.

    PubMed  Google Scholar 

  24. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166:7033–7034.

    CAS  PubMed  Google Scholar 

  25. Goriely S, Vincart B, Stordeur P, Vekemans J, Willems F, Goldman M, et al. Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J Immunol 2001;166:2141–2146.

    CAS  PubMed  Google Scholar 

  26. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998;16:495–521.

    Article  CAS  PubMed  Google Scholar 

  27. Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999;283:1183–1186.

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 2000;192:405–412.

    Article  CAS  PubMed  Google Scholar 

  29. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation, impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 2000;1:311–316.

    Article  CAS  PubMed  Google Scholar 

  30. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, non proliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000;192:1213–1222.

    Article  CAS  PubMed  Google Scholar 

  31. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med 2002;195:221–231.

    Article  CAS  PubMed  Google Scholar 

  32. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 1999;274:10689–10692.

    Article  CAS  PubMed  Google Scholar 

  33. Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Pro Nat Acad Sci U S A 1999;96:14459–14463.

    Article  CAS  Google Scholar 

  34. van Kooyk Y, Geijtenbeek TB. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 2003;3:697–709.

    Article  PubMed  Google Scholar 

  35. van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Innate signaling and regulation of dendritic cell immunity. Curr Opin Immunol 2007;19:435–440.

    Article  PubMed  Google Scholar 

  36. Marth T, Kelsall BL. Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med 1997;185:1987–1995.

    Article  CAS  PubMed  Google Scholar 

  37. Armant M, Avice MN, Hermann P, Rubio M, Kiniwa M, Delespesse G, et al. CD47 ligation selectively downregulates human interleukin 12 production. J Exp Med1999;190:1175–1182.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lung Lau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, EM., Law, H.K.W. & Lau, Y.L. Mycobacterium bovis bacillus Calmette-Guerin treated human cord blood monocyte-derived dendritic cells polarize naïve T cells into a tolerogenic phenotype in newborns. World J Pediatr 6, 132–140 (2010). https://doi.org/10.1007/s12519-010-0019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-010-0019-0

Key words

Navigation