Skip to main content

Advertisement

Log in

Flood hazard susceptibility assessment in Chiffa wadi watershed and along the first section of Algeria North–South highway using GIS and AHP method

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Flood susceptibility mapping and assessment are essential to determine adequate protective measures to ensure an area or infrastructure’s safety. This study aims to assess the susceptibility to flood hazards in the Chiffa wadi watershed and, alongside an important socio-economic project, the North–South highway’s first section. The applied approach, a combination of qualitative and quantitative methods, provided valuable results despite the lack of inventory of previous floods in the watershed. First, the triggering factors were selected based on field observations and climatic analysis. Then, the factors were mapped using a set of remote sensing data and other public institution data. Finally, the analytical hierarchy process (AHP) was used to weight and combine the factors. The calculated flood hazard susceptibility index was used to map the extent of this phenomenon using GIS techniques. An innovative approach was also used by combining the resulting flood hazard map with the road chaining plan to identify the most susceptible segments to flood hazard by kilometric points. The results indicate that 49.08% of the total section is highly to very highly susceptible to flooding. The results obtained can help the authorities to develop protection strategies to ensure the safety of the infrastructures and their users. Finally, the integration of geospatial techniques and AHP based on field observations and climate analysis in flood hazard assessment is a cost-effective and rapid approach and can be used in other geohazard assessments affecting the same infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelkarim A, Al-Alola SS, Alogayell HM, Mohamed SA, Alkadi II, Ismail IY (2020) Integration of GIS-based multicriteria decision analysis and analytic hierarchy process to assess flood hazard on the Al-Shamal train pathway in Al-Qurayyat region, Kingdom of Saudi Arabia. Water 12(6):1702

    Article  Google Scholar 

  • Abuzied S, Yuan M, Ibrahim S, Kaiser M, Saleem T (2016) Geospatial risk assessment of flash floods in Nuweiba area, Egypt. J Arid Environ 133:54–72

    Article  Google Scholar 

  • Agarwal E, Agarwal R, Garg RD, Garg PK (2013) Delineation of groundwater potential zone: an AHP/ANP approach. J Earth Syst Sci 122(3):887–898

    Article  Google Scholar 

  • Arabameri A, Rezaei K, Cerdà A, Conoscenti C, Kalantari Z (2019) A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci Total Environ 660:443–458

    Article  Google Scholar 

  • Areu-Rangel OS, Cea L, Bonasia R, Espinosa-Echavarria VJ (2019) Impact of urban growth and changes in land use on river flood hazard inVillahermosa, Tabasco (Mexico). Water 11(2):304

    Article  Google Scholar 

  • Asare-Kyei D, Forkuor G, Venus V (2015) Modeling flood hazard zones at the sub-district level with the rational model integrated with GIS and remote sensing approaches. Water 7(7):3531–3564

    Article  Google Scholar 

  • Benameur S, Benkhaled A, Meraghni D, Chebana F, Necir A (2017) Complete flood frequency analysis in Abiod watershed, Biskra (Algeria). Nat Hazards 86(2):519–534

    Article  Google Scholar 

  • Bezak N, Šraj M, Rusjan S, Mikoš M (2018) Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results. Geosciences 8(2):69

    Article  Google Scholar 

  • Bíl M, Vodák R, Kubeček J, Bílová M, Sedoník J (2015) Evaluating road network damage caused by natural disasters in the Czech Republic between 1997 and 2010. Transp Res A Policy Pract 80:90–103

    Article  Google Scholar 

  • Bles J-L (1971) Etude tectonique et microtectonique d’un massif autochtone tellien et de sa couverture de nappes; le Massif de Blida (Algerie du Nord). Bulletin De La Société Géologique De France 7(5–6):498–511

    Article  Google Scholar 

  • Bourenane H, Guettouche MS, Bouhadad Y, Braham M (2016) Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab J Geosci 9(2):1–24. https://doi.org/10.1007/s12517-015-2222-8

    Article  Google Scholar 

  • Busuioc A, von Storch H (2003) Conditional stochastic model for generating daily precipitation time series. Climate Res 24(2):181–195

    Article  Google Scholar 

  • Cabrera JS, Lee HS (2019) Flood-prone area assessment using GIS-based multi-criteria analysis: a case study in Davao Oriental, Philippines. Water 11(11):2203

    Article  Google Scholar 

  • Cabrera JS, Lee HS (2020) Flood risk assessment for Davao Oriental in the Philippines using geographic information system based multi-criteria analysis and the maximum entropy model. J Flood Risk Management e12607. https://doi.org/10.1111/jfr3.12607

  • Cai H, Rasdorf W, Tilley C (2007) Approach to determine extent and depth of highway flooding. J Infrastruct Syst 13(2):157–167

    Article  Google Scholar 

  • Cao C, Xu P, Wang Y, Chen J, Zheng L, Niu C (2016) Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8(9):948

    Article  Google Scholar 

  • Carmen Casas M, Herrero M, Ninyerola M, Pons X, Rodríguez R, Rius A, Redaño A (2007) Analysis and objective mapping of extreme daily rainfall in Catalonia. Int J Climatol 27(3):399–409

    Article  Google Scholar 

  • Cheikh Lounis G, Machane D, Belhai D, Chatelain JL, Dahmani K, Bichi N (2009) Floods and mudflows on November 11, 2001 in Bab El Oued,(Algiers). Proceeding of the 6th European Congress on Regional Geoscientific Cartography and Information Systems in Munich, 1, 328–331

  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096

    Article  Google Scholar 

  • Danumah JH, Odai SN, Saley BM, Szarzynski J, Thiel M, Kwaku A, Kouame FK, Akpa LY (2016) Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques,(cote d’ivoire). Geoenviron Disasters 3(1):10

    Article  Google Scholar 

  • Dawod GM, Mirza MN, Al-Ghamdi KA (2012) GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ Earth Sci 67(8):2205–2215

    Article  Google Scholar 

  • Ding Q, Chen W, Hong H (2017) Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int 32(6):619–639

    Google Scholar 

  • Durand Delga M (1969) Mise au point sur la structure du Nord-Est de la Berbérie. Publ. Serv. Carte géol. Algérie, NS. Bull Soc Géol Fr 13(7):328–337

    Google Scholar 

  • El Jazouli A, Barakat A, Ghafiri A, El Moutaki S, Ettaqy A, Khellouk R (2017) Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geosci Lett 4(1):1–12

    Article  Google Scholar 

  • Elhamdouni D, Arioua A, Elhmaidi A, Aba B, Mansour D, Karaoui I, Ouhamchich KA (2017) Geomatics tools and AHP method use for a suitable communal landfill site: case study of Khenifra region–Morocco. J Mater Environ Sci 8(10):3612–3624

    Google Scholar 

  • Elsheikh RFA, Ouerghi S, Elhag AR (2015) Flood risk map based on GIS, and multi criteria techniques (case study Terengganu Malaysia). J Geogr Inf Syst 07(04):348–357. https://doi.org/10.4236/jgis.2015.74027

    Article  Google Scholar 

  • Fan F, Deng Y, Hu X, Weng Q, Pal B, Samanta S, Maiti RK, Prasad HC, Bhalla P, Palria S, Rao BSP, Amminedu E, Rao J, Srinivas N, Rao NB, Roy PK, Sharma D, Use L, Leopold LB, ... Gautam NC (2014) Mapping and prediction of surface run-off using SCS-CN method. Sustain Cities Soc 1(1):1–4. https://doi.org/10.4236/jwarp.2009.1

    Article  Google Scholar 

  • Fernández T, Jiménez J, Fernández P et al (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). Int Soc Photogramme 37(8):351–356

    Google Scholar 

  • Gashaw W, Legesse D (2011) Flood hazard and risk assessment using GIS and remote sensing in fogera woreda, Northwest Ethiopia. In: Melesse AM (ed) Nile River Basin. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0689-7_9

  • Gaume E, Borga M (2008) Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. J Flood Risk Manag 1(4):175–189

    Article  Google Scholar 

  • Gigović L, Pamučar D, Bajić Z, Drobnjak S (2017) Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas. Water 9(6):360

    Article  Google Scholar 

  • Glangeaud, L. (1932). Etude géologique de la région littorale de la province d’Alger. Thèse sc. Paris et Bull Serv Carte géol, Alger, 2eme série, strat 8:608

  • Gudiyangada Nachappa T, Tavakkoli Piralilou S, Gholamnia K, Ghorbanzadeh O, Rahmati O, Blaschke T (2020) Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. J Hydrol 590:125275. https://doi.org/10.1016/j.jhydrol.2020.125275

  • Guettouche M-S (1991). Cartographie de l’érosion par télédétection satellitaire appliquée à la zone de Médéa. Thèse de magister. Usthb, Alger

  • Gumbel EJ (1958) Statistics of extremes, columbia univ. Press, New York, p 201

    Book  Google Scholar 

  • Guo Q, Huang J, Zhou Z, Wang J (2019) Experiment and numerical simulation of seawater intrusion under the influences of tidal fluctuation and groundwater exploitation in coastal multilayered aquifers. Geofluids 2019:12–15. https://doi.org/10.1155/2019/2316271

    Article  Google Scholar 

  • Haghizadeh A, Siahkamari S, Haghiabi AH, Rahmati O (2017) Forecasting flood-prone areas using Shannon’s entropy model. J Earth Syst Sci 126(3):39

    Google Scholar 

  • Hamdani N, Baali A (2020) Characterization of groundwater potential zones using analytic hierarchy process and integrated geomatic techniques in Central Middle Atlas (Morocco). Appl Geomat 12:323–335. https://doi.org/10.1007/s12518-020-00300-z

    Article  Google Scholar 

  • Hammami S, Zouhri L, Souissi D, Souei A, Zghibi A, Marzougui A, Dlala M (2019) Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci 12(21). https://doi.org/10.1007/s12517-019-4754-9

  • Harley P, Samanta S (2018) Modeling of inland flood vulnerability zones through remote sensing and GIS techniques in the highland region of Papua New Guinea. Appl Geomatics 10(2):159–171

    Article  Google Scholar 

  • Hasekioğulları GD, Ercanoglu M (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Nat Hazards 63(2):1157–1179

    Article  Google Scholar 

  • Hirschboeck KK (1988) Flood hydroclimatology. Flood Geomorphol 27:49

    Google Scholar 

  • Hollis GE (1975) The effect of urbanization on floods of different recurrence interval. Water Resour Res 11(3):431–435

    Article  Google Scholar 

  • Hong H, Panahi M, Shirzadi A, Ma T, Liu J, Zhu A-X, Chen W, Kougias I, Kazakis N (2018) Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci Total Environ 621:1124–1141

    Article  Google Scholar 

  • Infotrafic (2015) Online newspaper article. L’axe Médéa-Chiffa Fermé à La Circulation, Le Trafic Routier Dévié Vers Les RN 18 et 62, Available at : http://infotraficalgerie.dz/actualites/laxe-medea-chiffa-ferme-a-circulation-trafic-routier-devie-vers-rn-18-62

  • Jha MK, Afreen S (2020) Flooding urban landscapes: analysis using combined hydrodynamic and hydrologic modeling approaches. Water 12(7):1986

    Article  Google Scholar 

  • Kalantari Z, Nickman A, Lyon SW, Olofsson B, Folkeson L (2014) A method for mapping flood hazard along roads. J Environ Manage 133:69–77

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408

    Article  Google Scholar 

  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR (2016) A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards 83(2):947–987

    Article  Google Scholar 

  • Kia MB, Pirasteh S, Pradhan B, Mahmud AR, Sulaiman WNA, Moradi A (2012) An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environ Earth Sci 67(1):251–264

    Article  Google Scholar 

  • Kourgialas NN, Karatzas GP (2011) Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 56(2):212–225

    Article  Google Scholar 

  • L.Bahlouli (2004) Actes des journées techniques,risques naturels, inondation : prévision,protection. Risdques Majeurs Liés à l’eau, 63

  • Lawal DU, Yusof KW, Hashim MA, Balogun A-L (2014) Spatial analytic hierarchy process model for flood forecasting: an integrated approach. IOP Conf Ser Earth Environ Sci 20(1):12029

    Google Scholar 

  • Lee S, Kim J-C, Jung H-S, Lee MJ, Lee S (2017) Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Haz Risk 8(2):1185–1203

    Article  Google Scholar 

  • Li X, Yan D, Wang K, Weng B, Qin T, Liu S (2019) Flood risk assessment of global watersheds based on multiple machine learning models. Water 11(8):1654

    Article  Google Scholar 

  • LIBERTE (2017) Online newspaper article. Médéa: Débordement de l’oued Chiffa, Available at : https://www.algerie360.com/medea-debordement-deloued-chiffa. Accessed 25 Jan 2017

  • Lyu H-M, Shen S-L, Zhou A-N, Zhou W-H (2019) Flood risk assessment of metro systems in a subsiding environment using the interval FAHP-FCA approach. Sustain Cities Soc 50:101682.

  • Lyu H-M, Zhou W-H, Shen S-L, Zhou A-N (2020) Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustain Urban Areas 56:102103

    Google Scholar 

  • Mahmoud SH, Gan TY (2018) Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. J Clean Prod 196:216–229

    Google Scholar 

  • Merz B, Aerts J, Arnbjerg-Nielsen K, Baldi M, Becker A, Bichet A, Blöschl G, Bouwer LM, Brauer A, Cioffi F (2014) Floods and climate: emerging perspectives for flood risk assessment and management. Nat Hazard 14(7):1921–1942

    Article  Google Scholar 

  • Mihi A, Benarfa N, Arar A (2020) Assessing and mapping water erosion-prone areas in northeastern Algeria using analytic hierarchy process, USLE/RUSLE equation, GIS, and remote sensing. Appl Geomat 12:179–191. https://doi.org/10.1007/s12518-019-00289-0

    Article  Google Scholar 

  • Mojaddadi H, Pradhan B, Nampak H, Ahmad N, Ghazali AH (2017) Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomat Nat Haz Risk 8(2):1080–1102

    Article  Google Scholar 

  • Morea H, Samanta S (2020) Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the Kemp-Welch Catchment, Central Province, Papua New Guinea. Appl Geomat 12:427–440. https://doi.org/10.1007/s12518-020-00315-6

    Article  Google Scholar 

  • Murmu P, Kumar M, Lal D, Sonker I, Singh SK (2019) Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundw Sustain Dev 9:100239

    Article  Google Scholar 

  • Nadarajah S, Choi D (2007) Maximum daily rainfall in South Korea. J Earth Syst Sci 116(4):311–320

    Article  Google Scholar 

  • Nandi A, Mandal A, Wilson M, Smith D (2016) Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environ Earth Sci 75(6):465

    Google Scholar 

  • Neal J, Villanueva I, Wright N, Willis T, Fewtrell T, Bates P (2012) How much physical complexity is needed to model flood inundation? Hydrol Process 26(15):2264–2282

    Article  Google Scholar 

  • Ngo P-TT, Hoang N-D, Pradhan B, Nguyen QK, Tran XT, Nguyen QM, Nguyen VN, Samui P, Tien Bui D (2018) A novel hybrid swarm optimized multilayer neural network for spatial prediction of flash floods in tropical areas using sentinel-1 SAR imagery and geospatial data. Sensors 18(11):3704

  • Ouma YO, Tateishi R (2014) Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water 6(6):1515–1545

    Article  Google Scholar 

  • Pal R, Biswas SS, Mondal B, Pramanik MK (2016) Landslides and floods in the Tista Basin (Darjeeling and Jalpaiguri districts): historical evidence, causes and consequences. J Ind Geophys Union 20(2):66–72

    Google Scholar 

  • Patel DP, Srivastava PK, Singh SK, Prieto C, Han D (2020) One‐dimensional hydrodynamic modeling of the river Tapi: The 2006 Flood, Surat, India. Techniques for Disaster Risk Management and Mitigation, 209–235

  • Pedrozo-Acuña A, Moreno G, Mejía-Estrada P, Paredes-Victoria P, Breña-Naranjo JA, Meza C (2017) Integrated approach to determine highway flooding and critical points of drainage. Transp Res D Transp Environ 50:182–191

    Article  Google Scholar 

  • Pla C, Cuezva S, Martinez-Martinez J, Fernandez-Cortes A, Garcia-Anton E, Fusi N, Crosta GB, Cuevas-Gonzalez J, Cañaveras JC, Sanchez-Moral S (2017) Role of soil pore structure in water infiltration and CO2 exchange between the atmosphere and underground air in the vadose zone: a combined laboratory and field approach. Catena 149:402–416

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Article  Google Scholar 

  • Pregnolato M, Ford A, Wilkinson SM, Dawson RJ (2017) The impact of flooding on road transport: a depth-disruption function. Transp Res D Transp Environ 55:67–81

    Article  Google Scholar 

  • Rahman M, Ningsheng C, Islam MM, Dewan A, Iqbal J, Washakh RMA, Shufeng T (2019) Flood susceptibility assessment in Bangladesh using machine learning and multi-criteria decision analysis. Earth Syst Environ 3(3):585–601

    Article  Google Scholar 

  • Redaction (2018) Online newspaper article. Les Intempéries Ont Causé Des Inondations Sur l’axe Médéa-Chiffa, Available at : https://www.dzvid.com/2018/04/15/les-intemperies-ont-cause-des-inondations-sur-laxe-medea-chiffa. Accessed 15 Apr 2017

  • S.LAHLAH (2004) Actes des journées techniques risques naturels : inondations,prévisions, protection. Les Inondation En Algérie, 43

  • Saaty, R. W. (1980). The analytic hierarchy process, planning, priority setting, resources allocation, (McGraw: New York, USA). Fragiskos Batzias, Anastasios Gkionakis International. J Environ Sci. http://iaras.org/iaras/journals/ijes

  • Sahoo SN, Sreeja P (2017) Development of flood inundation maps and quantification of flood risk in an urban catchment of Brahmaputra River. ASCE-ASME J Risk Uncertain Eng Syst A Civ Eng 3(1):A4015001

    Article  Google Scholar 

  • Samanta S, Pal DK, Palsamanta B (2018) Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Appl Water Sci 8(2):66

    Article  Google Scholar 

  • Sami G, Hadda D, Mahdi K (2016) Flood hazard map in the city of Batna (Algeria) by hydraulic modeling approch. Annals of the University of Oradea, Geography Series/Analele Universitatii din Oradea, Seria Geografie 26(1):Article no. 261108–704

  • Sami G, Hadda D, Mahdi K, Abdelwahhab F (2020) A multi-criteria analytical hierarchy process (AHP) to flood vulnerability assessment in Batna watershed (Algeria). Analele Universităţii Din Oradea, Seria Geografie 30(1):41–47

    Article  Google Scholar 

  • Seejata K, Yodying A, Wongthadam T, Mahavik N, Tantanee S (2018) Assessment of flood hazard areas using analytical hierarchy process over the Lower Yom Basin, Sukhothai Province. Procedia Eng 212:340–347

    Google Scholar 

  • Shafapour Tehrany M, Kumar L, Neamah Jebur M, Shabani F (2019) Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods. Geomat Nat Haz Risk 10(1):79–101

    Article  Google Scholar 

  • Singh P, Sinha VSP, Vijhani A, Pahuja N (2018) Vulnerability assessment of urban road network from urban flood. Int J Disaster Risk Reduct 28:237–250

    Article  Google Scholar 

  • Souissi D, Zouhri L, Hammami S, Msaddek MH, Zghibi A, Dlala M (2020) GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int 35(9):991–1017

    Article  Google Scholar 

  • Tehrany MS, Kumar L (2018) The application of a Dempster–Shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environ Earth Sci 77(13):490

    Article  Google Scholar 

  • Tehrany MS, Lee M-J, Pradhan B, Jebur MN, Lee S (2014a) Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environ Earth Sci 72(10):4001–4015

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2014b) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343

    Article  Google Scholar 

  • Tehrany MS, Jones S, Shabani F (2019) Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena 175:174–192

    Article  Google Scholar 

  • Vojtek M, Vojteková J (2019) Flood susceptibility mapping on a national scale in Slovakia using the analytical hierarchy process. Water 11(2):364

    Article  Google Scholar 

  • Wang Y, Hong H, Chen W, Li S, Panahi M, Khosravi K, Shirzadi A, Shahabi H, Panahi S, Costache R (2019) Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J Environ Manage 247:712–729

    Article  Google Scholar 

  • Weerasinghe KM, Gehrels H, Arambepola N, Vajja HP, Herath JMK, Atapattu KB (2018) Qualitative flood risk assessment for the western province of Sri Lanka. Procedia Eng 212:503–510

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of strength of materials. IVB-Handl

  • Yahiaoui A (2012) Inondations torrentielles. Cartographie des zones vulnérables en Algérie du Nord (cas de l’oued Mekerra, Wilaya de Sidi Bel Abbès). Thèse de doctorat: École Nationale Polytechnique El Harrach, Alger (Algérie)

  • Yariyan P, Janizadeh S, Van Phong T, Nguyen HD, Costache R, Van Le H, Pham BT, Pradhan B, Tiefenbacher JP (2020) Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping. Water Resour Manage 34(9):3037–3053

    Article  Google Scholar 

  • Yin J, Yu D, Yin Z, Liu M, He Q (2016) Evaluating the impact and risk of pluvial flash flood on intra-urban road network: a case study in the city center of Shanghai, China. J Hydrol 537:138–145

    Article  Google Scholar 

  • Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3(2):149–158

    Article  Google Scholar 

  • Youssef AM, Hegab MA (2019) Flood-hazard assessment modeling using multicriteria analysis and GIS: a case study—Ras Gharib area, Egypt. In Spatial modeling in GIS and R for earth and environmental sciences (pp 229–257). Elsevier. https://doi.org/10.1016/B978-0-12-815226-3.00010-7

  • Yu B, Wolman MG (1987) Some dynamic aspects of river geometry. Water Resour Res 23(3):501–509

    Article  Google Scholar 

  • Zou Q, Zhou J, Zhou C, Song L, Guo J (2013) Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch Environ Res Risk Assess 27(2):525–546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeldjalil Goumrasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goumrasa, A., Guendouz, M., Guettouche, M.S. et al. Flood hazard susceptibility assessment in Chiffa wadi watershed and along the first section of Algeria North–South highway using GIS and AHP method. Appl Geomat 13, 565–585 (2021). https://doi.org/10.1007/s12518-021-00381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-021-00381-4

Keywords

Navigation