Skip to main content
Log in

UAV monitoring and documentation of a large landslide

  • Original Paper
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

In June 2013, heavy precipitation triggered a large earthflow of several million cubic meters in a small village in Austria. A bundle of technologies was applied to monitor and document the landslide, such as geophysical methods (geoelectrics, inclinometer, soil moisture, and soil temperature) and Global Navigation Satellite System (GNSS) measurements. Additionally, an Unmanned Aerial Vehicle (UAV) was used for the periodical assessment of the landslide process. In total, nine flights were performed with a multicopter equipped with a digital single-lens reflex camera (DSLR) that delivered several thousands of images. Based on these images and detailed GNSS measurements of the landslide area, orthophotos as well as generated Digital Surface Models (DSMs) with an accuracy of less than ±10 cm resulted. Fissure tracking, flow direction and velocity, and mass balances as well as the construction progress of the protection and mitigation measures were derived from these data sets. The application of the UAV turned out to be a cost- and time-effective tool for landslide-monitoring that provides researchers and engineers with accurate high-resolution geodata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agisoft (2014) Official Agisoft Homepage. http://www.agisoft.ru. Accessed 14 Apr 2014

  • Batut A (1890) La photographie aérienne par cerf-volant. Gauthier-Villars, Paris

    Google Scholar 

  • Bichler A, Bobrowsky P, Best M, Douma M, Hunter J, Calvert T, Burns R (2004) Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide. Landslides 1(1):29–40. doi:10.1007/s10346-003-0008-7

    Article  Google Scholar 

  • Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125(4):472–484. doi:10.1016/j.geomorph.2010.09.017

    Article  Google Scholar 

  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm 92:79–97. doi:10.1016/j.isprsjprs.2014.02.013

    Article  Google Scholar 

  • Egger J (1986) Zur Geologie der nördlichen Kalkalpen und der Flyschzone in den oberösterreichischen Voralpen zwischen Ennstal, Pechgraben und Ramingbach. Dissertation, Universität Salzburg

  • Eisenbeiss H (2009) UAV Photogrammetry. Dissertation, Eidgenössische Technische Hochschule Zürich

  • Geyer G (1904) Über die Granitklippe mit dem Leopold von Buch-Denkmal im Pechgraben bei Weyer. Lechner

  • Gili JA, Corominas J, Rius J (2000) Using Global Positioning System techniques in landslide monitoring. Eng Geol 55(3):167–192. doi:10.1016/S0013-7952(99)00127-1

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides. doi:10.1007/s10346-013-0436-y

    Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2010) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28

    Article  Google Scholar 

  • Jones LD (2006) Monitoring landslides in hazardous terrain using terrestrial LiDAR: an example from Montserrat. Q J Eng Geol Hydrogel 39(4):371–373

    Article  Google Scholar 

  • Lindner G (2013) Einsatz von „Unmanned Aerial Vehicles“ im Bereich des alpinen Naturgefahrenmanagements anhand von ausgewählten Beispielen. Master thesis, BOKU University of Natural Resources and Life Sciences Vienna

  • Mazzanti P, Bozzano F, Cipriani I, Prestininzi A (2014) New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study. Landslides. doi:10.1007//s10346-014-0469-x

    Google Scholar 

  • Mikrokopter (2013) Official Mikrokopter Homepage. http://www.mikrokopter.com. Accessed 1 May 2013

  • Naudet V, Lazzari M, Perrone A, Loperte A, Piscitelli S, Lapenna V (2008) Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy). Eng Geol 98(3-4):156–167. doi:10.1016/j.enggeo.2008.02.008

    Article  Google Scholar 

  • Newhall B (1969) Airborne camera: the world from the air and outer space. Hasting House, London

    Google Scholar 

  • Niethammer U, James MRR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the Super-Sauze landslide: evaluation and results. Eng Geol 128:2–11. doi:10.1016/j.enggeo.2011.03.012

    Article  Google Scholar 

  • Oberhauser R, Bauer FK, Geologische Bundesanstalt Wien (1980) Der Geologische Aufbau Österreichs. Springer

  • Prokešová R, Kardoš M, Medveďová A (2010) Landslide dynamics from high-resolution aerial photographs: a case study from the Western Carpathians, Slovakia. Geomorphology 115(1-2):90–101. doi:10.1016/j.geomorph.2009.09.033

    Article  Google Scholar 

  • Przybilla HJ, Wester-Ebbinghaus W (1979) Bildflug mit ferngelenktem Kleinflugzeug. Bildmessung Und Luftbildwesen, Zeitschrift Für Photogrammetrie Und Fernerkundung XLVII(5):137–142

  • Rau JY, Jhan JP, Lo CF, Lin YS (2011) Landslide Mapping using imagery acquired by a fixed-wing UAV. ISPRS J Photogramm XXXVIII-1/C22:195-200. doi:10.5194/isprsarchives-XXXVIII-1-C22-195-2011

  • Riedel B, Walther A (2008) InSAR processing for the recognition of landslides. Adv Geosci 14:189–194. doi:10.5194/adgeo-14-189-2008

    Article  Google Scholar 

  • Rosenberg G (1964) Die zweite Pechgraben-Enge bei Weyer (Oberösterreich). Verh Geol B-A H2:187–195

    Google Scholar 

  • Sauerbier M, Schrotter G, Eisenbeiss H (2006) Multi-Resolution Image-based Visualization of Archaeological Landscapes in Palpa, Peru. Proceedings of the 2nd International Conference on Remote Sensing in Archaeology, December 4-7 2006. pp 353–359

  • Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79(3-4):215–229. doi:10.1016/j.enggeo.2005.01.015

    Article  Google Scholar 

  • Stumpf A, Malet JP, Kerle N, Niethammer U, Rothmund S (2013) Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186:12–27. doi:10.1016/j.geomorph.2012.12.010

    Article  Google Scholar 

  • Stumpf A, Malet JP, Allemand P, Ulrich P (2014) Surface reconstruction and landslide displacement measurements with Pléiades satellite images. ISPRS J Photogramm 95:1–12. doi:10.1016/j.isprsjprs.2014.05.008

    Article  Google Scholar 

  • Tahar KN (2013) An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block. ISPRS J Photogramm XL-2(W2):93–98. doi:10.5194/isprsarchives-XL-2-W2-93-2013

    Google Scholar 

  • Trimble (2014) Official Trimble Homepage. http://www.trimble.com/gnssplanningonline/. Accessed 14 Aug 2014

  • ublox (2013) LEA-6S product sheet. http://www.u-blox.com/images/downloads/Product_Docs/LEA-6_ProductSummary_%28GPS.G6-HW-09002%29.pdf. Accessed 14 Sept 2013

  • Varnes D (1978) Slope movement types and processes. In: Special report 176: Landslides: Analysis and Control. Transportation and Road Research Board, Washington, D.C. pp 11-33

  • Wester-Ebbinghaus W (1980) Aerial photography by radio controlled model helicopter. Photogramm Rec 10:85–92. doi:10.1111/j.1477-9730.1980.tb00006.x

    Article  Google Scholar 

  • Wolter A, Stead D, Clague JJ (2014) A morphologic characterisation of the 1963 Vajont Slide, Italy, using long-range terrestrial photogrammetry. Geomorphology 206:147–164. doi:10.1016/j.geomorph.2013.10.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Georg Nagl and Fritz Zott for the technical support during fieldwork, which resulted in a productive on-site experience. Furthermore, we would like to thank the WLV for providing data (laserscans, orthophotos, GNSS measurements) and also for surveying the GCPs. Last but not least, we wish to thank all the helping hands that were involved in handling the landslide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Lindner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, G., Schraml, K., Mansberger, R. et al. UAV monitoring and documentation of a large landslide. Appl Geomat 8, 1–11 (2016). https://doi.org/10.1007/s12518-015-0165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-015-0165-0

Keywords

Navigation