Skip to main content
Log in

Change detection and deformation analysis using static and mobile laser scanning

  • Review
  • Published:
Applied Geomatics Aims and scope Submit manuscript

Abstract

Laser scanning is rapidly evolving as a surveying technique and is not only used to assess the geometrical state of a scene but also to assess changes in that state. Change detection is, however, a challenging application for several reasons. First, laser scanning is not measuring fixed points, such as a total station does, therefore in general, some interpolation or object extraction method is required. Second, errors that are inevitably present when determining the geometric state of a scene of interest in one epoch will add up when comparing the state between epochs. In addition, data volumes are constantly increasing, therefore processing methods should be computationally efficient. This paper reviews recent methodology in the form of a method breakdown, thereby distinguishing methods aiming at pure binary change detection from methods that in addition want to quantify change. In addition, the direction of a change is discussed, notably in connection with the measurement geometry. Also, the reference state is discussed, which can be in the form of a free form surface, or in the form of some idealized mathematical primitive like a plane. The different methods are presented in connection with applications in fields like structural monitoring, geomorphology, urban inventory and forestry, as considered by the original authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abell A, Jaboyedoff M, Oppikofer T, Vilaplana JM (2009) Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Nat Hazards Earth Syst Sci 9:365–372

    Article  Google Scholar 

  • Aijazi AK, Checchin P, Trassoudaine L (2013a) Automatic removal of imperfections and change detection for accurate 3D urban cartography by classification and incremental updating. Remote Sens 5(8):3701–3728

    Article  Google Scholar 

  • Aijazi AK, Checchin P, Trassoudaine L (2013b) Detecting and updating changes in lidar point clouds for automatic 3d urban cartography. ISPRS Annals of the Photogramm, Remote Sens Spat Inf Sci II (5/W2):7–12

    Article  Google Scholar 

  • Antonarakis A, Richards K, Brasington J (2008) Object-based land cover classification using airborne lidar. Remote Sens Environ 12 (6):2988–2998

    Article  Google Scholar 

  • Barbarella M, Fiani M, Lugli A (2013) Application of LiDAR-derived DEM for detection of mass movements on a landslide. Int Arch Photogramm Remote Sens Spat Inf Sci XL (5/W3):89–98

    Google Scholar 

  • Barnhart TB, Crosby BT (2013) Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska. Remote Sens 5(6):2813–2837

    Article  Google Scholar 

  • Bremer M, Sass O (2012) Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 138:49–60

    Article  Google Scholar 

  • Bucksch A, Khoshelham K (2013) Localized registration of point clouds of botanic trees. IEEE Geosci Remote Sens Lett 10:631–635

    Article  Google Scholar 

  • Elberink SO, Shoko MA, Fathi SA, Rutzinger M (2012) Detection of collapsed buildings by classifying segmented airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII:307–312

    Article  Google Scholar 

  • van Goor B, Lindenbergh R, Soudarissanane S (2011) Identifying corresponding segments from repeated scan data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII-5 (W12):295–300

    Google Scholar 

  • Grosse-Schwiep M, Piechel J, Luhmann T (2013) Measurement of rotor blade deformations of wind energy converters with laser scanners. ISPRS Annals of the Photogramm, Remote Sens Spat Inf Sci II (5/W2):97–102

    Article  Google Scholar 

  • Hähnel D, Schulz D, Burgard W (2003) Mobile robot mapping in populated environments. Adv Robot 17(7):579–597

    Article  Google Scholar 

  • Hanssen RF (2001) Radar Interferometry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Hebel M, Arens M, Stilla U (2013) Change detection in urban areas by object-based analysis and on-the-fly comparison of multi-view ALS data. ISPRS J Photogramm Remote Sens 86:52–64

    Article  Google Scholar 

  • Hoffmeister D, Tilly N, Curdt C, Aasen H, Ntageretzis K, Hadler H, Willershuser T., Vött A, Bareth G (2012) Terrestrial laser scanning for coastal geomorphologic research in Western Greece. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX(B5):511–516

    Article  Google Scholar 

  • Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62(6):415–433

    Article  Google Scholar 

  • Hwang J, Yun H, Jeong T, Suh Y, Huang H (2013) Frequent unscheduled updates of the national base map using the land-based mobile mapping system. Remote Sens 5:2513–2533

    Article  Google Scholar 

  • van Kaick O, Zhang H, Hamarneh G, Cohen-Or D (2011) A survey on shape correspondence. Comput Graph Forum 30 (6):1681–1707

    Article  Google Scholar 

  • Kang Z, Zhang L, Yue H, Lindenbergh R (2013) Range image techniques for fast detection and quantification of changes in rerepeated scanned buildings. Photogramm Eng Remote Sens 79(8):695–707

    Article  Google Scholar 

  • Kutulakos KN, Seitz SM (2000) A theory of shape by space carving. Int J Comput Vis 38 (3):199–218

    Article  Google Scholar 

  • Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm Remote Sens 82:10–16

    Article  Google Scholar 

  • Liang X, Hyyppä J, Kaartinen H, Holopainen M, Melkas T (2012) Detecting changes in forest structure over time with bi-temporal terrestrial laser scanning data. ISPRS Int J Geo-Inf 1:242–255

    Article  Google Scholar 

  • Lindenbergh R (2013) Trends in detecting changes from repeated laser scanning data. In: Proceedings 2nd Joint International Symposium on Deformation Monitoring (JISDM) Nottingham

  • Lindenbergh R, Soudarissanane S, de Vries S, Gorte B, de Schipper M (2011) Aeolian beach sand transport monitored by terrestrial laser scanning. Photogramm Record 26:384–399

    Article  Google Scholar 

  • Olsen M, Kuester F, Chang B, Hutchinson T (2010) Terrestrial laser-scanning-based structural damage assessment. J Comput Civ Eng 24:264–272

    Article  Google Scholar 

  • Oude Elberink S, Shoko M, Fathi S, Rutzinger M (2011) Detection of collapsed buildings by classifying segmented airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 38(V/W12):1–6

    Google Scholar 

  • Paar G, Huber NB, Bauer A, Avian M, Reiterer A (2012) Vision-based terrestrial surface monitoring, In: Terrigenous Mass Movements. Springer

  • Park H, Lee H, Adeli H, Lee I (2007) A new approach for health monitoring of structures: terrestrial laser scanning. Comput Aided Civ Infrastruct Eng 22(1):19–30

    Article  Google Scholar 

  • Pesci A, Casula G, Boschi E (2011) Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): detailed deformation patterns of two ancient leaning buildings. J Cult Herit 12:117–127

    Article  Google Scholar 

  • Pesci A, Teza G, Bonali E, Casula G, Boschi E (2013) A laser-scanning based method for fast estimation of seismic-induced building deformations. ISPRS J Photogramm Remote Sens 79:185–198

    Article  Google Scholar 

  • Rieg L, Wichmann V, Rutzinger M, Sailer R, Stötter J, Geist T (2014) Data infrastructure for multitemporal airborne lidar point cloud analysis—examples from physical geography in high mountain environments. Comput Environ Urban Syst 45:137–146

    Article  Google Scholar 

  • Riveiro B, Arias P, Armesto J, Rial F, Solla M (2008) Multidiscipliniar approach to historical arch bridges documentation. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVII(B5):1–6

    Google Scholar 

  • Rutzinger M, Rüf B, Höfle B, Vetter M (2010) Change detection of building footprints from airborne laser scanning acquired in short time intervals. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7B):1–6

    Google Scholar 

  • Schwalbe E, Maas HG, Dietrich R, Ewert H (2008) Glacier velocity determination from multi temporal terrestrial long range laser scanner point clouds. Int Arch Photogramm Remote Sens Spat Inf Sci 37:457–462

    Google Scholar 

  • Skowronski NS, Clark KL, Gallagher M, Birdsey RA, Hom JL (2014) Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oakpine forest. Remote Sensing of Environment Available online

  • Soudarissanane S, Lindenbergh R, Menenti M, Teunissen P (2011) Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J Photogramm Remote Sens 66(4):389–399

    Article  Google Scholar 

  • Swart LT (2010) How the up-to-date height model of the Netherlands (AHN) became a massive point data cloud. In: Proc. Manage Massive Point Cloud Data: Wet and Dry, pp 1–18. Nederlandse Commissie voor Geodesie

  • Tam G, Cheng ZQ, Lai YK, Langbein F, Liu Y, Marshall D, Martin R, Sun XF, Rosin P (2013) Registration of 3D point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans Vis Comput Graph 19(7):1199–1217

    Article  Google Scholar 

  • Tang P, Huber D, Akinci B (2011) Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces. J Comput Civ Eng 25:31–42

    Article  Google Scholar 

  • Teo TA, Shih TY (2013) Lidar-based change detection and change-type determination in urban areas. Int J Remote Sens 34:968–981

    Article  Google Scholar 

  • Vosselman G, Maas HG (eds) (2010) Airborne and Terrestrial laser scanning. Whittles Publishing, Dunbeath, Scotland

  • Wang T, Jaw J, Chang Y, Jeng F (2009) Application and validation of profile-image method for measuring deformation of tunnel wall. Tunn Undergr Space Technol 24:136–147

    Article  Google Scholar 

  • Wujanz D, Neitzel F, Hebel HP, Linke J, Busch W (2013) Terrestrial radar and laser scanning for deformation monitoring: first steps towards assisted radar scanning. ISPRS Annals Photogramm Remote Sens Spat Inf Sci II(5/W2):325–330

    Article  Google Scholar 

  • Xiao W, Vallet B, Paparoditis N (2013) Change detection in 3D point clouds acquired by a mobile mapping system. ISPRS Annals Photogramm Remote Sensing Spat Inf Sci II(5/W2):331–337

    Article  Google Scholar 

  • Xiao W, Xu S, Oude Elberink S, Vosselman G (2012) Change detection of trees in urban areas using multi-temporal airborne lidar point clouds. In: SPIE Remote Sensing, Edinburgh, 24-27 September, SPIE, vol 8532

  • Xu S, Vosselman G, Oude Elberink S (2013) Detection and classification of changes in buildings from airborne laser scanning data. ISPRS Annals Photogramm Remote Sens Spat Inf Sci II:343–348

  • Young AP, Olsen MJ, Driscoll N, Flick R, Gutierrez R, Guza R, Johnstone E, Kuester F (2010) Comparison of airborne and terrestrial lidar estimates of seacliff erosion in southern california. Photogramm Eng Remote Sens 76:421–427

    Article  Google Scholar 

  • Zeibak R,Filin S (2007) Change detection via terrestrial lasers canning. IASPRS XXXVI(3):430–435

    Google Scholar 

Download references

Acknowledgments

Gemeentewerken Rotterdam is thanked for providing the data used to generate Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderik Lindenbergh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindenbergh, R., Pietrzyk, P. Change detection and deformation analysis using static and mobile laser scanning. Appl Geomat 7, 65–74 (2015). https://doi.org/10.1007/s12518-014-0151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12518-014-0151-y

Keywords

Navigation