Skip to main content
Log in

Mineral chemistry (EMPA) of monazites in metamorphic rocks from Edea region: implications of the monazite chemistry on the metamorphic evolution of the Nyong Complex

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Edea region is situated in the Nyong Complex within the Northwestern edge of the Congo craton in Cameroon. The back scattered electron image and the mineral composition of monazite were determined using an electron microprobe analytical technique. The objective of this study was to constraint the geochemical and the textural composition on the behavior of metamorphic monazites on the EMP in issue to delineate the metamorphic evolution of the Nyong Complex. Metamorphic Th-rich monazite-(Ce) exhibiting a predominance of LREEs, with Ce as dominant REEs, were recorded in meta-igneous rocks and metasedimentary rocks. Irrespective of core and rim domains, monazite of sample ED4B and M4 have 85 to 98 mol% monazite content and characterized by low cheralite content (< 7 mol%). Monazite from sample ED3D yields huttonitic monazite (4575 mol% monazite content) and monazite (75–98 mol%) fields; they are characterized by low cheralite (< 5 mol%), high monazite (75–98 mol%), relative high cheralite (6–12 mol%), and low monazite (65–80 mol%). Monazite compositions are linked by dominantly huttonitic and cheralite substitutions. The metamorphic evolution indicates that both meta-igneous rocks and metasedimentary rocks of the Nyong Complex are overprinted by two respective high-grade phases of metamorphism. The first phase of metamorphism in the meta-igneous rocks is underlined by globular monazite grains; the second phase is characterized by elongated and oriented monazite crystals following the mylonitic foliation S1. The first phase of metamorphism in metasedimentary rocks is marked by ovoid grains of monazite; the last phase is characterized by elongated and oriented monazites which mimic the S2 schistosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akame JM, Oliveira EP, Poujol M, Hublet G, Debaille V (2020a) LA–ICP–MS zircon U Pb dating, Lu Hf, Sm Nd geochronology and tectonic setting of the Mesoarchean mafic and felsic magmatic rocks in the Sangmelima granite-greenstone terrane, Ntem Complex (South Cameroon). Lithos 372–373:105702. https://doi.org/10.1016/j.lithos.2020.105702

    Article  Google Scholar 

  • Akame JM, Owona S, Hublet G, Debaille V (2020b) Archean tectonics in the Sangmelima granite-greenstone terrains, Ntem Complex (NW Congo craton), southern Cameroon. J Afr Earth Sci 168:103872. https://doi.org/10.1016/j.jafrearsci.2020.103872

    Article  Google Scholar 

  • Akame JM, Schulz B, Owona S, Debaille V (2021) Monazite EPMA-CHIME dating of Sangmelima granulite and granitoid rocks in the Ntem Complex, Cameroon: implications for Archean tectono-thermal evolution of NW Congo craton. J Afri Earth Sci 181:1–20

    Google Scholar 

  • Anders E, Grevesse N (1989) Abundance of elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Google Scholar 

  • Bea F (2015) Geochemistry of the lanthanide elements. XXXV Reunión de la Sociedad Española de Mineralogía, Department of Mineralogy and Petrology, University of Granada pp 1-12

  • Bhadra S (2016) Timing and duration of ultra-high temperature metamorphism in apphirine-bearing metapelite ghranulite from Kodaikanal, Madurai block, South India: constraints from mineral chemistry and U-Th-total Pb epmaage of monazite. J Appl Geochem 18(1):22–34

    Google Scholar 

  • Biljana SM, Krenn E, Finger F (2014) Microcrystals of Th-rich monazite (La) with a negative Ce anomaly in metadiorite and their role for documenting Cretaceous metamorphism in the Slavonian Mountains (Croatia). Miner Petrol 108:231–243

    Google Scholar 

  • Bouyo Houketchang M, Penaye J, Mouri H, Toteu SF (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: mineralogical evidence and implications for a highpressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton. J Afr Earth Sc 149:215–234

    Google Scholar 

  • Brandt S, Schenk V, Raith MM, Appel P, Gerdes A, Srikantappa C (2011) Late Neoproterozoic P-T evolution of HP-UHT granulites from the Palni Hills (South India): new constraints from phase diagram modelling, LA-ICP-MS zircon dating and in-situ EMP monazite dating. J Petrol 52:1813–1856. https://doi.org/10.1093/petrology/egr032

    Article  Google Scholar 

  • Braun I, Montel JM, Nicollet C (1998) Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol 146:65–85

    Google Scholar 

  • Braun I, Bröcker M (2004) Monazite dating of granitc gneiss and leucogranites from the Kerala Khondalite Belt, Southern India: implications for Late Protetrozoic crustal evolution in East Gondwana. Int J Earth Sc (Geol Rundsch) 93:13–22

  • Breithaupt A (1829) Über den Monazit, eine neue Specie des Mineral Reichs. J Chem Phys 55:301–303

    Google Scholar 

  • Broska I, Williams CT, Janák M, Nagy G (2005) Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos 82:71–83

    Google Scholar 

  • Caxito FA, Santos LCML, Ganade CE, Bendaoud A, Fettous EH, Bouyo Houketchang M (2020) Toward an integrated model of geological evolution for NE Brazil–NW Africa: the Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. Special session, “A tribute to Edilton Santos, a leader in Precambrian Geology in Northeastern Brazil”, edited by AN Sial and VP Ferreira. Brazilian J Geol 50(2):1–38. https://doi.org/10.1590/2317-4889202020190122

    Article  Google Scholar 

  • Chombong NN, Suh CE, Lehmann B, Vishiti A, Ilouga DC, Shemang EM, Tantoh BS, Kedia AC (2017) Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Appl Earth Sci 126:129–145

    Google Scholar 

  • Coates JS (1935) Geology of ceylon. Ceylon J Sci (b) 19(2):101–187

  • Dahl SP, Terry MP, Jercinovic MJ, Williams MJ, Hamilton MA, Foland KA, Clement SM, Friberg LM (2005) Electron probe (ultrachron) microchronometry of metamorphic monazite: unraveling the timing of polyphase thermotectonism in the easternmost Wyoming Craton (Black hills, South Dakota). Am Mineral 90:1712–1728

    Google Scholar 

  • Dawood YH, Abd El-Naby HH (2007) Mineral chemistry of monazite from the black sand deposits, northern Sinai, Egypt: a provenance perspective. Mineral Mag 71(4):389–406

    Google Scholar 

  • Didier A, Putlitz B, Baumgartner LP, Bouvier AS, Vennemann TW (2017) Evaluation of potential monazite reference materials for oxygen isotope analyses by SIMS and laser assisted fluorination. Chem Geol 450:199–209. https://doi.org/10.1016/j.chemgeo.2016.12.031

    Article  Google Scholar 

  • Djoukouo Soh AP, Ganno S, Zhang LC, Soh Tamehe L, Wang CL, Peng ZD, Tong XX, Nzenti JP (2021) Geochemical and geochronological constraints on the origin of the Bibole banded iron formations, northwestern Congo Craton Cameroon: implications for their depositional age and tectonic environment. Geol Mag 158:2245–2263. https://doi.org/10.1017/S0016756821000765

    Article  Google Scholar 

  • Donovan JJ, Hanchar JM, Picolli PM, Schrier MD, Boatner LA, Jarosewich E (2003) A Re Examination of the rare-earth-element orthophosphate standards in use for electron microprobe analysis. Can Mineral 41(1):221–232. https://doi.org/10.2113/gscanmin.41.1.221

    Article  Google Scholar 

  • Feybesse JL, Johan V, Triboulet C, Guerrot C, Mayaga-Mikolo F, Bouchot V, Eko NJ (1998) The West Central African belt: a model of 2.5-2.0 Ga accretion and two-phase orogenic evolution. Prec Res 87:161–216

    Google Scholar 

  • Finger F, Broska I, Roberts MP, Schermaier A (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite faciès granite gneiss from the eastern Apls. Am Mineral 83:248–258

    Google Scholar 

  • Förster HJ (1998) The chemical composition of REE–Y– Th–U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. I. The monazite-(Ce) – brabantite solid solution series. Am Mineral 83:259–272

    Google Scholar 

  • Foster GL, Parrish RR (2003) Metamorphic monazite and the generation of P–T–t paths, in: Vance D, Muller W, Villa IM (Ed) Geochronology: linking the Isotopic Record with Petrology and Textures. Geol Soc London Spec Publ. 220:25–47

  • Franz G, Andrehs G, Rhede D (1996) Crystal chemistry of monazite and xenotime from Saxothuringian-Moldanubian metapelites, NE Bavaria, Germany. Eur J Mineral 8:1097–1118

    Google Scholar 

  • Gagné S, Jamieson RA, Mackay R (2009) Texture, composition, and age variations in monazite from the lower amphibolite to the granulite facies, longstaff bluff formation, Baffin Island, Canada. The Can Mineral 47:847–869

    Google Scholar 

  • Gardes E (2006) Diffusion du plomb dans la monazite. Thèse de doctorat, Université de Toulouse III

  • Gonçalves GO, Lana C, Scholz R, Buick IS, Gerdes A, Kamo SL, Corfu F, Rubatto D, Wiedenbeck M, Nalini HA, Oliveira LCA (2018) The Diamantina monazite: a new low-Th reference material for microanalysis. Geostand Geoanal Res 42:25–47. https://doi.org/10.1111/ggr.12192

    Article  Google Scholar 

  • Goncalves P, Nicollet C, Montel JM (2004) Petrology and insitu U-Th-Pb monazite geochronology of ultrahigh-temperature metamorphism from the Andriamena Mafic Unit, North–Central Madagascar. Significance of a petrographical P–T Path in a polymetamorphic context. J Petrol 1–35

  • Harley SL, Nandakumar V (2014) Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt. India J Petrol 55(10):1965–2002

    Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300–900°C and 200–1000 MPa: metasomatism and the propagation of metastable mineral phases. Am Mineral 92:1652–1664

    Google Scholar 

  • Harrison TM, Catlos EJ, Montel JM (2002) U-Th–Pb dating of phosphate minerals. Rev Mineral Geochem 48:524–558. https://doi.org/10.2138/rmg.2002.48.14

    Article  Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An Empirical Calibration J Metamorph Geol 15:3–16

    Google Scholar 

  • Hobart MK (2018) Monazite: a rare phosphate mineral mined from placer deposits for its rare earth and thorium content. Retrieval from https://geology.com/minerals/monazite.htm. Accessed 16 Oct 2014

  • Holder RM, Hacker BR, Kylander-Clark ARC, Cottle JM (2015) Monazite trace-element and isotopic signatures of (ultra)high-pressure metamorphism: examples from the Western Gneiss Region, Norway. Chem Geol 409:99–111

    Google Scholar 

  • Hughes JM., Foord EE, Hubbard MA, Ni Yunxiang (1995) The crystal structure of cheralite-(Ce), (LREE, Ca, Th, U)(P, Si)PO4, a monazite-group mineral. Neues Jahrb. Mineral Monatsh 344–350

  • Ilouga DCI, Ndong Bidzang F, Ziem A, Bidias LA, Olinga JB, Tata E, Minyem D (2017) Geochemical characterization of a stratigraphic log bearing iron ore in the Sanaga Prospect, Upper Nyong Unit of Ntem Complex. Cameroon. J Geosci Geom 5(5):218–228. https://doi.org/10.12691/jgg-5-5-1

    Article  Google Scholar 

  • Jarosewich E, Boatner LA (1991) Rare-earth element reference samples for electron microprobe analysis. Geostd News Lett 15(2):397–399. https://doi.org/10.1111/j.1751-908X.1991.tb00115.x

    Article  Google Scholar 

  • Jaroslav P (2010) Metamorphic-hydrothermal REE minerals in the Bacúch magnetite deposit, western Carpathians, Slovakia: (Sr, S)-rich monazite-(Ce) and Nd-dominant hingganite. Can Mineral 48:81–94. https://doi.org/10.3749/canmin.48.1.81

    Article  Google Scholar 

  • Jercinovic MJ, Williams ML (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. Am Miner 90(5):526–546. https://doi.org/10.2138/am.2005.1422

    Article  Google Scholar 

  • Kiesl W, Wieseneder H, Kluger F (1983) Untersuchungen des Vorkommens der Seltenen Erden und von Thorium in Gesteinen des unteraustroalpinen Kristallins des Semmering- Wechselfensterns. - Sitzungsber Österr Akad Wiss Mathem-Naturwiss Kl, Abt I, 192/1–4:1–20

  • Kouankap Nono GD, Njiosseu Tanko EL, Takodjou Wambo JD, Kamguia Woguia B, Afahnwie Ngambu A, Fomena Tchinda H, Folah Mewa CL (2018) Petro-structural characterization of Bonguen Area, Nyong Series, Cameroon: insight into the Northern Extension of Kribi-Campo Shear Zone. Earth Sci 7(5):236–241. https://doi.org/10.11648/j.earth.20180705.15

    Article  Google Scholar 

  • Krenn E, Finger F (2007) Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, Greece: microprobe data and geochronological implications. Lithos 95:130–147

    Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milesi JP, Tchameni R, Nsifa NE, Fanning CM, Deloule E (2006) SHRIMP U/Pb zircon age evidence for paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean-transamazonian belt of NE Brasil and central Africa. J Afric Earth Sci 44:413–427

    Google Scholar 

  • Li XH, Chen Y, Li J, Yang C, Ling XX, Tchouankoue JP (2016) New isotopic constraints on age and origin of Mesoarchean charnockite, trondhjemite and amphibolite in the Ntem Complex of NW Congo Craton, southern Cameroon. Prec Res 276:14–23. https://doi.org/10.1016/j.precamres.2016.01.027

    Article  Google Scholar 

  • Linthout K (2007) Tripartite division of the system 2REEPO4–CaTh(PO4)2–2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can Mineral 45:503–508

    Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the EburnianTransamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Prec Res 304:1–11

    Google Scholar 

  • Malz N (2001) Electron-microprobe dating of monazite. Institute of Mineralogy, TU Bergakademie Freiberg 1–11

  • Maurizot P, Abessolo A, Feybesse A, Johan JL, Lecomte P (1986) Etude et prospection minière du Sud-Cameroun. Synthèse des travaux de 1978 à 1985. Rapport BRGM, 85. Cameroun 066:224

    Google Scholar 

  • Mbang Bonda BM, Etame J, Kouske AP, Bayiga EC, Ngon GF, Mbaï SJ, Gérard M (2017) Ore texture, mineralogy and whole rock geochemistry of the iron mineralization from Edea North Area, Nyong Complex, Southern Cameroon: implication for origin and enrichment process. Int J Geosci 8:659–677. https://doi.org/10.4236/ijg.2017.85036

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) A fast, reliable, inexpensive in-situ dating technique: electron microprobe ages of monazite. Chem Geol 131:37–53

    Google Scholar 

  • Montel JM, Kornprobst J, Vielzeuf D (2000) Preservation of old U-Th–Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamorph Geol 18:335–342. https://doi.org/10.1046/j.1525-1314.2000.00261.x

    Article  Google Scholar 

  • Montel JM, Devidal JL, Avignant D (2002) X-ray diffraction study of brabantite–monazite solid solutions. Chem Geol 191:89–104

    Google Scholar 

  • Moussango Ibohn AP, Njom B, Sep Nlomngan JP, Ntantoh S, Mbog Bassong, SP, Ekodeck GE (2022) Characterization and tectonic significance of the deformation in the northern edge of the Paleoproterozoic Nyomg Complex and identification of the fault systems of the Sanaga fault and Edea (Cameroon, Central Africa. AJGS 15(6). https://doi.org/10.1007/s12517-022-09588-0

  • Mvodo H, Ganno S, Kouankap Nono GD, Fossi DH, Nga Essomba PE, Ma NT, Nzenti JP (2022) Petrogenesis, LA-ICP-MS zircon U-Pb geochronology and geodynamic implications of the Kribi metavolcanic rocks, Nyong Group, Congo craton. Acta Geochim. https://doi.org/10.1007/s11631-022-00533-2

    Article  Google Scholar 

  • Nagy G, Draganits E (1999) Occurrence and mineral-chemistry of monazite and rhabdophane in the Lower and? Middle Austroalpine tectonic units of the southern Sopron Hills (Austria). Mitt Ges Geol Bergbaustud Österr 42:21–36

    Google Scholar 

  • Ndema Mbongué JL (2016) Evolution tectono-metamorphique de la serie du Nyong à Edea et à Eseka. Thèse de doctorat Ph.D, Université de Yaoundé I

  • Ndema Mbongué JL, Aroke EA (2020) Petrology and geochemical constraints on the origin of banded iron formation-hosted iron mineralization from the Paleoproterozoic Nyong Serie (Congo Craton, South Cameroon), Pout Njouma Area (Edea North): Evidence for Iron Ore Deposits. IJRIAS 5(8):55–72

    Google Scholar 

  • Ndema Mbongué JL, Nzenti JP, Suh CE (2014) Origin and evolution of the formation of the Nyong serie in the Western Border of the Congo Craton. J Geosci Geom 2(2):62–75

    Google Scholar 

  • Ndema Mbongué JL, Sigué C, Nzenti JP, Suh CE (2019a) Structural characterization of outcrop-scale in Edea and Eseka area: evidence for a complex polyphase deformation in the Paleoproterozoic Nyong Serie (Congo craton-South Cameroon). JAGG 7(5):01–09

    Google Scholar 

  • Ndema Mbongué JL, Sigué C, Nzenti JP, Suh CE (2019b) Distribution of rare earth elements in the metamorphic rocks of the Paleoproterozoic Nyong Unit (Congo Craton, South – Cameroon. J Appl Sci 5(7):35–49

    Google Scholar 

  • Ngnotué T, Ganno S, Nzenti JP, Schulz B, Tchaptchet Tchato D, Suh Cheo E (2012) Geochemistry and geochronology of Peraluminous High-K granitic leucosomes of Yaoundé series (Cameroon): evidence for a unique Pan-African magmatism and melting event in North Equatorial Fold Belt. Int J Geosci 3:525–548

    Google Scholar 

  • Nsifa Nkonguin E, Tchameni R, Nédeélec A, Siqueira R, Pouclet A, Bascou J (2013) Structure and petrology of Pan-African nepheline syenites from the South West Cameroon; implications for their emplacement mode, petrogenesis and geodynamic significance. J Afr Earth Sc 87:44–58

    Google Scholar 

  • Nzenti JP, Barbey P, Macaudiere J, Soba D (1988) Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Prec Res 38:91–109

    Google Scholar 

  • Nzepang Tankwa M, Ganno S, Okunlola OA, Njiosseu T, Tamehe ELS, Woguia LK, Mbita MB, Nzenti JP (2021) Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology. Int Geol Rev 63(14):1737–1757

    Google Scholar 

  • Overstreet WC (1967) The geology occurrence of monazite. USGS, Professional paper 530. pp 294

  • Owona S, Ondoa JM, Ratschbacher L, Ndzana SPM, Tchoua FM, Ekodeck GE (2011) The geometry of the Archean, Paleo- and Neoproterozoic tectonics in the Southwest Cameroon. Comptes Rendus Geosci 343:312–322. https://doi.org/10.1016/j.crte.2010.12.008

    Article  Google Scholar 

  • Owona S, Tichomirowa M, Ratschbacher L, Mvondo Ondoa J, Youmen D, Pfänder JA, Affaton P (2012) New igneous (zircon Pb/Pb) and metamorphic (Rb/Sr) ages in the Neoproterozoic Yaoundé Group (Cameroon, Central Africa): Consequences for the orogenic evolution north of The Congo Craton. Int J of Earth Sci 101(7):1689–1703

    Google Scholar 

  • Owona S, Ratschbacher L, Gulzar MA, Nsangou Ngapna M, Mvondo Ondoa J, Ekodeck GE (2020) New U-Pb zircon ages of Nyong Complex meta-plutonites: inferences on the Eburnean/Trans-Amazonian orogeny in SW Cameroon (Central Africa) Geol J 1–15https://doi.org/10.1002/gj.4022

  • Owona S, Ratschbacher L, Nsangou Ngapna M, Gulzar AM, Ondoa M, Ekodeck JGE (2021a) How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology. Prec Res 359:106220

    Google Scholar 

  • Owona S, Ratschbacher L, Nsangou Ngapna M, Gulzar AM, Ondoa M, Ekodeck JGE (2021b) Reply to comment on ‘“How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology” by Mvondo and Bineli Betsi’’. Prec Res 366:106418

    Google Scholar 

  • Owona S, Schulz B, Minyem D, Ratschbacher L, Chako Tchamabe BC, Olinga JB, Mvondo Ondoa J, Ekodeck GE (2022) Eburnean/Trans-Amazonian orogeny in the Nyong complex of southwestern Cameroon: meta-basite geochemistry and metamorphic petrology. J Afric Earth Sci. https://doi.org/10.1016/j.jafrearsci.2022.104515

    Article  Google Scholar 

  • Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Google Scholar 

  • Peiffert C, Cuney M (1999) Hydrothermal synthesis of the complete solid solution between Monazite (LaPO4) and Huttonite (ThSiO4) at 780°C and 200 Mpa. J Conf Abstract 4:522

    Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounté J, Ganwa A, Minyem D, Nsifa EN (2004) The 2,1Ga West Central African Belt in Cameroon: extension and evolution. J Afr Earth Sc 39:159–164

    Google Scholar 

  • Perumalsamy C, Bhadra S, Balakrishnan S (2016) Decoding evolutionary history of provenance from beach placer monazites: a case study from Kanyakumari coast, southwest India. Chem Geol 427:83–97

    Google Scholar 

  • Petrík I, Janák M, Klonowska I, Maika J, Froitzheim N, Yoshida K et al (2019) Monazite behaviour during metamorphic evolution of a diamondbearing gneiss: a case study from the Seve Nappe Complex, Scandinavian Caledonides. J Petrol 60:1773–1796

    Google Scholar 

  • Poitrasson F, Chenery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci Lett 145:79–96

    Google Scholar 

  • Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U-Th–Pb geochronology and nuclear ceramics. Geochim Cosmochim Acta 64:3283–3297

    Google Scholar 

  • Pouclet A, Tcahameni R, Mezger K, Vidal M, Nsifa EN, Shang C, Penaye J (2007) Archaean crustal accretion at the Northern border of Congo Craton (South Cameroon) The charnockite-TTG ling. Bull Soc Géol De France 178:331–342

    Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory phase growth in low-pressure migmatites from SW New Hampshire. Am Miner 88:338–351

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, Mcdonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Google Scholar 

  • Rupasinghe MS, Gocht W, Dissanayake CB (1983) The genesis of thorium-rich monazite placer deposits in Sri Lanka. J Natn Sci Coun Sri Lanka 11(1):99–110

    Google Scholar 

  • Sawka WN, Banfield JF, Chappell BW (1986) A waethering-related origin of widespread monazite in S-type granites. Geochim Cosmochim Act 50:171–175

    Google Scholar 

  • Schultz B (2021) Monazite microstructures and their interpretation in petrochronology. Frontiers in Earth Sci 9:1–22

    Google Scholar 

  • Schulz B, Brätz H, Bombach K, Krenn E (2007a) Insitu Th-Pb dating of monazite by 266 nm laser ablation and ICPMS with a single collector, and its control by EMP analysis. – Z. Angew Geol 35:377–392

  • Schulz B, Krenn E, Finger F, Brätz H, Klemd R (2007b) Cadomian and Variscan metamorphic events in the Léon Domain (Armorican Massif, France): P-T data and EMP monazite dating. Geol Soc Am Special Paper 423–12:267–285

  • Seydoux-Guillaume AM, Montel JM, Bingen B, de Parseval VP, Paquette JL et al (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U/Pb and Th/Pb chronometers. Chem Geol 33:140–158. https://doi.org/10.1016/j.chemgeo.2012.07.031

    Article  Google Scholar 

  • Shang CK, Satirb M, Siebel W, Taubald H, Nsifa EN, Westphal M, Reitter E (2001) Genesis of K-rich granitoids in the Sangmelima region, Ntem complex (Congo craton), Cameroon. Terra Nostra 5:60–63

    Google Scholar 

  • Shang CK, Satirb M, Siebelb W, Nsifa NE, Taubaldb H, Liegeois JP, Tchoua FM (2004) TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb-Sr and Sm-Nd systematics: case of the Sangmelima region, Ntem complex, Southern Cameroon. J Afric Earth Sci 40:61–79

    Google Scholar 

  • Shang CK, Liégeois JP, Satirb M, Nsifa FW, EN, (2010) Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes. Gondwana Res 475:1–19

    Google Scholar 

  • Siivola J, Schmid R (2007) List of mineral abbreviations. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version. Web version 01 February 2007. www.bgs.ac.uk/scmr/home.html. Accessed 31 Dec 2013

  • Soh Tamehe L, Wei C, Ganno S, Rosière CA, Nzenti JP, Ebotehoun CG, Lu G (2021) Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: Insights from isotopic, geochemical and geochronological studies of drillcore samples. Geosci Frontiers 12:549–572

    Google Scholar 

  • Soh Tamehe L, Wei C, Ganno S, Rosière CA, Li H, Soares MB, Nzenti JP, Santos JOS, Bekker A (2022) Provenance of metasiliciclastic rocks at the northwestern margin of the East Gabonian Block: Implications for deposition of BIFs and crustal evolution in southwestern Cameroon. Prec Res. https://doi.org/10.1016/j.precamres.2022.106677

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite and xenotime in metamorphic rocks. – In: Kohn M, Rakovan J, Hughes JM (Eds.) Phosphates — geochemical, geobiological and materials importance. Rev Mineral Geochem. Mineral Soc Am, Washington DC, 48:293–335

  • Takam T, Arima M, Kokonyangi J, Dunkley DJ, Nsifa EN (2009) Paleoarchaean charnockite in the Ntem Complex, Congo Craton, Cameroon: insights from SHRIMP zircon U-Pb ages. J Mineral Petrol Sci 104:1–11. https://doi.org/10.2465/jmps.080624

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Publishing, Oxford, UK, p 312

  • Tchameni R, Mezger K, Nsifa NE, Pouclet A (2000) Neoarchaean evolution in the Congo craton: evidence from K rich granitoids of the Ntem complex, Southern Cameroon. J Afric Earth Sci 30:133–147

    Google Scholar 

  • Tchameni R, Pouclet A, Mezger K, Nsifa NE, Vicat JP (2004) Monozircon and Sm-Nd whole rock ages from the Ebolowa greenstone belts: Evidence for the terranes older than 2.9 Ga in the Ntem Complex (Congo craton, South Cameroon). J CA Sci 4:213–224

    Google Scholar 

  • Tchameni R, Lerouge C, Penaye J, Cocherie A, Milesi JP, Toteu SF, Nsifa NE (2010) Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U-Pb SHRIMP zircon dates. J Afr Earth Sci 58:67–80

    Google Scholar 

  • Thiéblemont D, Callec Y, Fernandez-Alonso M, Chène F (2018) A geological and isotopic framework of Precambrian Terrains in Western Central Africa: an introduction. In: Siegesmund S, Basei MAS, Oyhantçabal P, Oriolo S (eds) Geology of Southwest Gondwana. Springer International Publishing, Cham, pp 107–132. https://doi.org/10.1007/978-3-319-68920-3_5

    Chapter  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Nyobe JB (1994) U-Pb and Sm-Nd evidence for Eburnian and Pan-African high grade metamorphism in cratonic rocks of southern Cameroon. Precambr Res 67:321–347

    Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U-Pb and Sm-Nd data from North-Central Cameroon and its bearing on the pre-pan African history of Central Africa. Prec Res 108:45–73

    Google Scholar 

  • Toteu SF, Penaye J, Deloule E, Van Schmus WR, Tchameni R (2006) Diachronous evolution of volcano-sedimentary basins north of the Congo Craton: insights from U/Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon). J Afric Earth Sci 44:428–442

    Google Scholar 

  • Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2000) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chem Geol 172:95–112

    Google Scholar 

  • Van Emden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Canad Mineral 35:95–104

    Google Scholar 

  • Williams ML, Jercinovic MJ (2002) Microprobe monazite geochronology: putting absolute time into microstructural analysis. J Struct Geol 24:1013–1028

    Google Scholar 

  • Wu L-G, Li X-H, Ling X-X, Yang Y-H, Li C-F, Li Y-L, Mao Q, Li Q-L, Putlitz B (2019) Further characterization of the RW-1 monazite: a new working reference material for oxygen and neodymium isotopic microanalysis. Minerals 9:583. https://doi.org/10.3390/min9100583

  • Zhu XK, O’Nions RK (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology; a case study from the Lewisian terrain. Earth Planet Sci Lett 171:209–220

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chair of Mineralogy, University of Erlangen-Numberg (Germany) and especially Professor Bernhard Schulz for EMPA on monazite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndema Mbongué Jean Lavenir.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 124 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavenir, N.M.J., Cyrille, S., Paul, N.J. et al. Mineral chemistry (EMPA) of monazites in metamorphic rocks from Edea region: implications of the monazite chemistry on the metamorphic evolution of the Nyong Complex. Arab J Geosci 15, 1665 (2022). https://doi.org/10.1007/s12517-022-10924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10924-7

Keywords

Navigation