Skip to main content

Advertisement

Log in

Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

A 22-member ensemble from CMIP6 is used to analyze the Iran future climate in terms of surface air temperature, identifying when anomalies of 1.5 °C, 2.0 °C, and 2.5 °C would be achieved with respect to the preindustrial period (1861–1900). Validation was conducted using data from 97 stations of IRIMO around Iran in the 1990–2014 period, and the following range metrics were obtained: 1.45–3.49 (MAE), 1.82–3.99 (RMSE), and 16.51–38.04 (MAPE); however, ACCESS-ESM1.5, ACCESS-CM2, CESM2-WACCM, BCC-CSM2-MR, FGOALS-g3, INM-CM5-0, and CNRM-CM6-1-HR models display the best performance. The global warming targets (\({D}_{1.5}, {D}_{2.0}, {D}_{2.5}\)) are attained by the 2019, 2029, and 2047 under SSP1-2.6 scenario; 2017, 2031, and 2043 under SSP2-4.5 scenario; and 2016, 2028, and 2039 under SSP5-8.5 scenario; on the other hand, the respectively attained years for Iran are 2007, 2019, and 2030 under SSP1-2.6 scenario; 2007, 2016, and 2028 under SSP2-4.5 scenario; and 2006, 2015, and 2027 under SSP5-8.5 scenario, an evidence of a higher mean increase in surface air temperature with respect to the global behavior. We identified important aspects regarding the temperature anomalies in the Iran region: (1) a mean warming of 0.64 °C (SSP1-2.6), 1.47 °C (SSP2-4.5), and 0.74 °C (SSP5-8.5) for the 2000–2024 period with respect to the preindustrial baseline; (2) a mean warming of 0.82 °C (SSP1-2.6), 2.06 °C (SSP2-4.5), and 0.76 °C (SSP5-8.5) for the 1960–2014 period with respect to the preindustrial period; (3) a warming trend of 2.88 \(^\circ \mathrm{C} {cy}^{-1}\) for the 1960–2014 period, more than the triple of the trend for the 1850–2014 period of \(0.54^\circ \mathrm{C} {cy}^{-1}\); and (4) for the 2014–2100 period, it was possible to see warming trends of \(1.34^\circ \mathrm{C} {cy}^{-1}\)(SSP1-2.6), \(3.36^\circ \mathrm{C} {cy}^{-1}\)(SSP2-4.5), and \(7.46^\circ \mathrm{C} {yr}^{-1}\)(SSP5-8.5), which represent trends above double the trend observed in the 1960–2014 period under the SSP5-8.5 projection scenario. All of these indicators show an intensification of the warming over the Iran region with respect to the global trends. From the spatial analysis of surface air temperature trends over five regions of Iran for the 1850–2014, 1960–2014, 2014–2050, and 2014–2100 periods, it was possible to identify a significant increase in all the trends over Iran but specially in the central part of the country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbasian M, Moghim S, Abrishamchi A (2019) Performance of the general circulation models in simulating temperature and precipitation over Iran. Theor Appl Climatol 135:1465–1483

    Article  Google Scholar 

  • Ali S, Liu Y, Ishaq M, Shaq T, Aasir A, Ud-Din I (2017) Climate change and its impact on the yield of major food crops: evidence from Pakistan. Foods Basel Switz 6:39. https://doi.org/10.3390/foods6060039

    Article  Google Scholar 

  • Alijani B, Ghohroudi M, Arabi N (2008) Developing a climate model for Iran using GIS. Theor Appl Climatol 92:103–112

    Article  Google Scholar 

  • Almazroui M, Saeed S, Saeed F, Islam M, Ismail M (2020) Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst Environ 4:297–320. https://doi.org/10.1007/s41748-020-00157-7

    Article  Google Scholar 

  • Babar Z, Zhi X, Ge F, Riaz M, Mahmood A, Sultan S, Shad M, Aslam C, Ahmad M (2016) Assessment of southwest Asia surface temperature changes: CMIP5 20 th and 21 st century simulations 13:11–23

  • Bi M, Dix S, Marsland S, O'Farrell H, Rashid P, Uotila A, Hirst E, Kowalczyk M, Golebiewski A, Sullivan H, Yan N, Hannah C, Franklin Z, Sun P, Vohralik I, Watterson X, Zhou R, Fiedler M, Collier Y, Ma J, Noonan L, Stevens P, Uhe H, Zhu S, Griffies R, Hill C, Harris K, Puri (2013) The ACCESS coupled model: description control climate and evaluation. Australian Meteorological and Oceanographic Journal 63(1):41–64. https://doi.org/10.22499/2.6301.004

  • Cao J, Wang B, Yang Y, MaL, Li L, SunB, BaoY, He J, Zhou X, Wu L (2018). The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geosci. Model Dev 11:2975–2993

  • Cherchi A, Fogli PG, Lovato T, Peano D, Iovino D, Gualdi S, Masina S, Scoccimarro E, Bellucci A, Navarra A (2018) Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J Adv Model Earth Syst 11: https://doi.org/10.1029/2018MS001369

  • Dadashi-rodbari A., Salehabadi N., 2020. Projected temperature anomalies and trends in different climatic zones in Iran based on CMIP6. Iran J Geophys. https://doi.org/10.30499/ijg.2020.249997.1292

  • Doulabian S, Golian S, Toosi AS, Murphy C (2020) Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. J Water Clim Change 15:123–145

    Google Scholar 

  • Eyring V, Bony S, Meehl G, Senior C, Stevens B, Stouffer R, Taylor K (2015) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organisation. Geosci Model Dev Discuss 8:10539–10583

    Google Scholar 

  • Gidden M, Riahi K, Smith S, Fujimori S, Luderer G, Kriegler E, van Vuuren D, van den Verg M, Feng L, Klein D, Calvin K, Doelman L, Frank S, Fricko O, Harmsen M, Hasegawa T, Havlik P, Hilaire J, Hoesly R, Horing J, Popp A, Stehfest E, Takahashi K (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12:1443–1475

    Article  Google Scholar 

  • Guo X, Huang J, Luo Y, Zhao Z, Xu Y (2016) Projection of precipitation extremes for eight global warming targets by 17 CMIP5 models. Nat Hazards 84:2299–2319

    Article  Google Scholar 

  • Gutjahr O, Putrasahan D, Lohmann K, Jungclaus J, von Storach J, Bruggermann N, Haak H, Stossel A (2019) Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci Model Dev 12:3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

    Article  Google Scholar 

  • Hashemi H, Uvo CB, Berndtsson R (2015) Coupled modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrol Earth Syst Sci 19:4165–4181

    Article  Google Scholar 

  • He B, Bao Q, Wang X, Zhou L, Xiaofei W, Yimin L, Guoxiong W, Kangjun C, Sicheng H, Wenting H, Jiandong L, Jinxiao L, Guokui N, Lei W, Jing Y, Minghua Z, Xiaogi Z (2019) CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project aimulation. Adv Atmospheric Sci 36:771–778. https://doi.org/10.1007/s00376-019-9027-8

    Article  Google Scholar 

  • IPCC (2013a) The Intergovernmental Panel on Climate Change bureau.

  • IPCC (2013b) See guidance note for lead authors of the IPCC Fifth Assessment Report on consistent treatment of uncertainties.

  • IPCC (2014a) Climate Change 2007: Synthesis Report. A report of the intergovernmental panel on climate change (no. RC-1). IPCC.

  • IPCC (2014b) Climate Change 2013: The Physical Science Basis. Chapter 13. Sea level change. (No. RC-1). IPCC.

  • IPCC (2014c) Climate Change 2013: The Physical Science Basis. Chapter 3. Observations: ocean (No. RC-1). IPCC.

  • IPCC (2014d) Climate Change 2013: The Physical Science Basis. Chapter 9. Evaluation of climate models (No. RC-1). IPCC.

  • IPCC (2014e) Climate Change 2014: Synthesis Report. Switzerland, Geneva

    Google Scholar 

  • James, R., Washington, R., Schleussner, C.-F., Rogelj, J., Conway, D., 2017. Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. WIREs Clim. Change 8, e457.

  • Katiraie-Boroujerdy P-S, Akbari Asanjan A, Chavoshian A, Hsu K, Sorooshian S (2019) Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set. Int J Climatol 39:3505–3522

    Article  Google Scholar 

  • Khazaei MR, Zahabiyoun B, Saghafian B (2012) Assessment of climate change impact on floods using weather generator and continuous rainfall-runoff model. Int J Climatol 32:1997–2006

    Article  Google Scholar 

  • Lal R (2013) Food security in a changing climate. Ecohydrol Harmon Soc Needs Biosphere Potential 13:8–21

    Google Scholar 

  • Lauritzen P., Nair R., Herrington A., Callaghan P., Goldhaber S., Dennis J., Bacmesiter J., Eaton B., Zarzycki M., Taylor M., Ullrich P., Dubos T., Gettelman A., Neale R., Dobbins B., Reed K., Hannay C., Medeiros B., Benedict J., Tribbia J., 2018. NCAR Release of CAM-SE in CESM2.0: a reformulation of the spectral element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy. J Adv Model Earth Syst .

  • Law R, Ziehn T, Matear R, Lenton A, ChamberlainM., Stevens L., Wang Y., Srbinovsky J., Bi D., Yan H., Vohralik P., (2017) The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – part 1: model description and pre-industrial simulation. Geosci Model Dev 10:2567–2590

    Article  Google Scholar 

  • Lee W, Wang Y, Shiu C, Tsai I, Tu C, Lan Y, Chen J, Pan H, Hsu H (2020) Taiwan Earth System Model version 1: description and evaluation of mean state. Geosci Model Dev 13:3887–3904

    Article  Google Scholar 

  • Liu S., Chen Y., Rao J., Cao C., Li Y., Ma M., Wang Y., 2019. Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere 10.

  • Lurton T., Balkanski Y., Bastrikov V., Bekki S., Bopp L., Braconnot P., Brockmann P., Casule P., Contoux C., Cozic A., Cugnet D., Dufresne J., Ethe C., Foujols M., Ghattas J., Hauglustaine D., Hu R., Kageyama M., Khodri M., Lebas N., Levavasseur G., Marchand M., Ottle C., Peylin P., Sima A., Szopa S., Thieblemont R., Vuichard N., Boucher O., 2020. Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J Adv Model Earth Syst.

  • Maghsood FF, Moradi H, Bavani AR, Panahi M, Berndtsson R, Hashemi H (2019) Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water 11:22

    Article  Google Scholar 

  • Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R, Brovkin V, Claussen M, Crueger T, Esch M, Fast I, Fiedler S, Flaschner D, Gayler V, Giorgetta M, Goll D, Haak H, Hagemann S, Hedernann C, Hohenegger C, Ilyina T, Jahns T, Jimenez de la Cuesta D, Jungclaus J, Kleinen T, Kloster S, Kracher D, Stefan K, Kleberg D, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Mobis B, Muller W, Nabel J, Nam C, Notz D, Nyawira S, Paulsen H, Peters K, Pincus R, Pohlmann H, Pongratz J, Popp M, Raddatz T, Rast S, Redler R, Reick C, Rohrscheneider T, Schemann V, Schimidt H, Schnur R, Schulzweida U, Six K, Stein L, Stemmler I, Stevens B, von Storch J, Tian F, Voigt A, Vrese P, Wieners K, Wilkenskjeld S, Winkler A, Roeckner E (2019) Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Syst 11:998–1038

    Article  Google Scholar 

  • Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T., Ye, A., Di, Z., Gong, W., 2014. Assessment of CMIP5 climate models and projected temperature changes over northern Eurasia. Environ. Res. Lett. 9, 055007.

  • Mousavi A, Ardalan A, Takian A, Ostadtaghizadeh A, Naddafi K, Bavani A (2020) Climate change and health in Iran: a narrative review. J Environ Health Sci Eng 18:367–378

    Article  Google Scholar 

  • O’Neill B, Tebaldi C, van Vuuren D, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J, Lowe J, Meehl G, Moss R, Riahi K, Sanderson B (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482

    Article  Google Scholar 

  • O’Neill B, Kriegler E, Ebi K, Kemp-Benedict E, Riahi K, Rothman D, van Ruijven B, van Vuuren D, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Change 42:169–180. https://doi.org/10.1016/j.gloenvcha.2015.01.004

    Article  Google Scholar 

  • Paul A, Kaviani A, Hatzfeld D, Vergne J, Mokhtari M (2006) Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran). Geophys J Int 166:227–237

    Article  Google Scholar 

  • Popp A, Calvin K, Fujimori S, Havlik P, Humpenoder F, Stehfest E, Bodirsky B, Dietrich J, Doelmann J, Gusti M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Wise M, Kriegler E, Lotze-Campen H, Fricko O, Riahi K, van Vuuren D (2017) Land-use futures in the shared socio-economic pathways. Glob Environ Change 42:331–345

    Article  Google Scholar 

  • Pu Y, Liu H, Yan R, Xia K, Li Y, Dong L, Wang H, Nie Y, Song M, Xie J, Zhao S, Chen K, Wang B, Li J, Zuo L (2020) CAS FGOALS-g3 model datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Adv Atmospheric Sci 37:1081–1092

    Article  Google Scholar 

  • Rahimi J, Laux P, Khalili A (2020) Assessment of climate change over Iran: CMIP5 results and their presentation in terms of Köppen-Geiger climate zones. Theor Appl Climatol 141:183–199

    Article  Google Scholar 

  • Riahi K, van Vuuren D, Kriegler E, Edmons J, O’Neill B, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma J, KC S., Leimbach M., Jiang L., Kram T., Rao S., Emmerling J., Ebi K., Hasegawa T., Havlik P., Humpenoder F., Da Silva L., Smith S., Stehfest E., Bosetti V., Eom J., Gernaat D., Masui T., Rogelj J., Strefler J., Drouet L., Krey V., Luderer G., Harmsen M., Takahashi K., Baumstarck L., Doelman J., Kainuma M., Klimont Z., Marangoni G., Lotze-Campen H., Obersteiner M., Tabeau A., Tavoni M., (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168

    Article  Google Scholar 

  • Sabziparvar A, Movahedi S, Asakereh H, Maryanaji Z, Masoodian SA (2015) Geographical factors affecting variability of precipitation regime in Iran. Theor Appl Climatol 120:367–376

    Article  Google Scholar 

  • Sabziparvar, A., 2008. National study on evidences and impacts of climate change with focus on water resources management (No. 32). Regional FAO Office, Rome.

  • Samadi S, Carbone GJ, Mahdavi M, Sharifi F, Bihamta MR (2012) Statistical downscaling of climate data to estimate streamflow in a semi-arid catchment. Hydrol Earth Syst Sci Discuss 9:4869–4918

    Google Scholar 

  • Sayari N, Bannayan M, Alizadeh A, Farid A (2013) Using drought indices to assess climate change impacts on drought conditions in the northeast of Iran (case study: Kashafrood basin). Meteorol Appl 20:115–127

    Article  Google Scholar 

  • Schleussner C-F, Lissner TK, Fischer EM, Wohland J, Perrette M, Golly A, Rogelj J, Childers K, Schewe J, Frieler K, Mengel M, Hare W, Schaeffer M (2016) Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth Syst Dyn 7:327–351

    Article  Google Scholar 

  • Séférian R, Nabat P, Michou M, Saint-Martin D, Voldoire A, Colin J, Decharme B, Delire C, Berthet S, Chevallier M, Senesi S, Franchisteguy L, Vial J, Mallet M, Joetzjer E, Geoffroy O, Gueremy J, Vial J, Mallet M, Joeltzjer E, Geoffroy O, Gueremy J, Moine M, Msadek R, Ribes A, Rocher M, Roehrig R, Melia D, Sanchez E, Terray L, Valcke S, Waldman E, Aumont O, Bopp L, Deshayes J, Ethe C, Madec G (2019) Evaluation of CNRM Earth System Model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J Adv Model Earth Syst 11:4182–4227

    Article  Google Scholar 

  • Sellar A, Jones C, Mulcahy J, Tang Y, Yool A, Wiltshire A, O’Connor F, Stringer M, Hill R, Palmieri J, Woodward S, de Mora L, Kuhlbrodt T, Rumbold S, Kelley D, Ellis R, Johnson C, Walton J, Abraham N, Andrews M, Andrews T, Archibald A, Berthou S, Burke E, Blockley E, Carsiaw K, Dalvi M, Edwards J, Folberth G, Gedney N, Griffiths P, Harper A, Liddicoat S, Morgenstern O, Parker R, Predoi V, Robertson E, Siahaan A, Smith R, Swaminathan R, Woodhouse M, Zeng G, Zerroukat M (2019) UKESM1: description and evaluation of the U.K. Earth System Model. J Adv Model Earth Syst 11:4513–4558

    Article  Google Scholar 

  • Shadkam S, Ludwig F, van Vliet MTH, Pastor A, Kabat P (2016) Preserving the world second largest hypersaline lake under future irrigation and climate change. Sci Total Environ 559:317–325

    Article  Google Scholar 

  • Sharmila S, Joseph S, Sahai A, Abhilash S, Chattopadhyay R (2015) Future projection of Indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

    Article  Google Scholar 

  • Soltani M, Laux P, Kunstmann H, Stan K, Sohrabi MM, Molanejad M, Sabziparvar A, Ranjbar SaadatAbadi A, Ranjbar F, Rousta I, Zawar-Reza P, Khoshakhlagh F, Soltanzadeh I, Babu CA, Azizi GH, Martin MV (2016) Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor Appl Climatol 126:775–795

    Article  Google Scholar 

  • Song Y, Li X, Bao Y, Song Z, Wei M, Shu Q, Yang X (2020) FIO-ESM v2.0 outputs for the CMIP6 Global Monsoons Model Intercomparison Project experiments. Adv Atmospheric Sci 37:1045–1056. https://doi.org/10.1007/s00376-020-9288-2

    Article  Google Scholar 

  • Stocklin J (1974) Possible ancient continental margin in Iran. Geol Cont Margins Springer 12:873–887

    Article  Google Scholar 

  • Swart N., Cole J., Kharin V., Lazare M., Scinocca J., Gillet N., Anstey J., Arora V., Christian J., Hanna S., Jiao Y., Lee W., Majaess F., Saenko A., Seiler C., Seinen C., Shao A., Sigmond M., Solheim L., von Salzen K., Yang D., Winter B., 2019. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev Discuss 1–68.

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Taylor MA, Clarke LA, Centella A, Bezanilla A, Stephenson TS, Jones JJ, Campbell JD, Vichot A, Charlery J (2018) Future Caribbean climates in a world of rising temperatures: The 1.5 vs 2.0 Dilemma. J Clim 31:2907–2926

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595. https://doi.org/10.1038/nclimate1495

    Article  Google Scholar 

  • United Nations, 2020. Sustainable development goals [WWW Document]. Sustain. Dev. Goals. URL https://www.un.org/sustainabledevelopment/climate-action/

  • Usta DFB, Teymouri M, Chatterjee U, Koley B (2021) Temperature projections over Iran during the twenty-first century using CMIP5 models. Model Earth Syst Environ.

  • Voldoire A., Saint-Martin D., Sénési S., Decharme B., Alias A., Chevallier M., Colin J., Gueremy J., Michou M., Moine M., Nabat P., Roehrig R., (2019) Evaluation of CMIP6 DECK Experiments with CNRM-CM6–1. J Adv Model Earth Syst 11:2177–2213.e

  • Volodin E, Mortikov E, Kostrykin S, Galin V, Lykossov V, Gritsun A, Diansky N, Gusev A, Iakovlev N, Shestakova A, Emelina S (2018) Simulation of the modern climate using the INM-CM48 climate model. Russ J Numer Anal Math Model 33:367–374

    Article  Google Scholar 

  • Volodin E., Mortikov E., Gritsun A., Lykossov V., Galin V., Diansky N., Gusev A., Kostrykin S., Iakolev N., Shestakova A., Emelina S., 2019. INM INM-CM5–0 model output prepared for CMIP6 CMIP piControl

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X (2019) The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600

    Article  Google Scholar 

  • Xiao-Ge X, Tong-Wen W, Jie Z, Fang Z, Wei-Ping L, Yan-Wu Z, Yi-Xiong L, Yong. Jie F., Wei-Hua J., Li Z., Min D., Xue-Li S., Jiang-Long L., Min C., Qian-Xia L., Jing-Hui Y. (2019) Introduction of BCC models and its participation in CMIP6. Adv Clim Change Res 15:533–539

    Google Scholar 

  • Zarenistanak M (2019) Historical trend analysis and future projections of precipitation from CMIP5 models in the Alborz mountain area. Iran Meteorol Atmospheric Phys 131:1259–1280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Uday Chatterjee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usta, D.F.B., Teymouri, M. & Chatterjee, U. Assessment of temperature changes over Iran during the twenty-first century using CMIP6 models under SSP1-26, SSP2-4.5, and SSP5-8.5 scenarios. Arab J Geosci 15, 416 (2022). https://doi.org/10.1007/s12517-022-09709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09709-9

Keywords

Navigation