Skip to main content
Log in

Geochemistry and U–Pb zircon age of the Paleoproterozoic metasedimentary rocks from the Bidou I, Nyong Series, Cameroon: Implications for provenance and tectonic setting

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Bidou I polymetallic prospect, located in the Nyong series, belongs to the northwestern edge of the Congo craton and consists of metasedimentary rocks. Combination of geochemistry with U–Pb zircon dating of these metamorphic formations was used to constrain the source and the tectonic setting of their protolith. Samples are highly enriched in SiO2 (54.4–88.06%) and Al2O3 (5.81–19.66%), depleted in CaO with a very high K2O/Na2O ratio > 1, which are characteristics of metasedimentary rocks. The studied samples are garnet gneisses and garnet micaschists having arkoses and greywackes as inferred protoliths, respectively. The felsic/intermediate nature of those protoliths is related to intracrustal differentiation of sedimentary recycling, marked by the accumulation of zircon. The metasediments undergone weak chemical alteration, range from immature to slightly mature and were derived from a moderately altered sedimentary source in an active tectonic setting. The protoliths of the Bidou I metasedimentary rocks are from the upper continental crust and were deposited in an active or passive continental margin. The duality of the tectonic setting highlights the progressive change in the geometry of the basin and the development of a continental island arc. U–Pb zircon dating yields ages of 2065 ± 25 Ma for garnet gneisses and 2405 ± 24 Ma for garnet micaschists. These new ages are consistent with the data presented by previous works at the NW border of the Congo craton in Cameroon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alkmim FF and Teixeira W (2017) The Paleoproterozoic Mineiro Belt and the Quadrilatero Ferrífero. In: Heilbron M., Cordani U., Alkmim F. (eds) São Francisco Craton, Eastern Brazil. Regional Geology Review, pp 71–94

  • Alkmim FF, Marshak S (1998) Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambr Res 90:29–58

    Google Scholar 

  • Amstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297

    Google Scholar 

  • Amstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Ramírez ET (2016) Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geol J. https://doi.org/10.1002/gj.2792

    Article  Google Scholar 

  • Andersen T (2005) Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chem Geol 216:249–270

    Google Scholar 

  • Armstrong-Altrin JS, Verma SP (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sed Geol 177:115–129

    Google Scholar 

  • Ayonta Kenne P, Tanko Njiosseu EL, Ganno S, Ngnotue T, Fossi DH, Ngoniri Hamdja A, Nga Essomba P, Nzenti JP (2021) Zircon trace element geochemistry and Ti-in-zircon thermometry of the Linté Pan-African granitoids, Central Cameroon: Constraints on the genesis of host magma and tectonic implications. Geol J 1–19. https://doi.org/10.1002/gj.4208

  • Barbosa JS, Barbosa and RG (2017) The Paleoproterozoic Eastern Bahia Orogenic Domain. In: Heilbron M, Cordani UG, Alkmim FF (Eds.) São Francisco Craton, Eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, pp 57–69

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron Formation, Transvaal Supergroup, South Africa. Precambr Res 79:37–55

    Google Scholar 

  • Belousova EA, Griffin EWL, O’Reilly SY, Fischer NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622

    Google Scholar 

  • Belousova E, Griffin W, O’Reilly SY (2005) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47:329–353

    Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193

    Google Scholar 

  • Block S, Baratoux L, Zeh A, Laurent O, Bruguier O, Jessell M, Ailleres L, Sagna R, Parra-Avila LA, Bosch D (2016) Paleoproterozoic juvenile crust formation and stabilisation in the south-eastern West African Craton (Ghana); new insights from UPb-Hf zircon data and geochemistry. Precambr Res 287:1–30

    Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterization of Early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 222:43–60

    Google Scholar 

  • Boniface N, Schenk V and Appel P (2012) Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precambrian Research 192–195

  • Bouyo Houketchang M, Penaye J, Mouri H, Toteu SF (2019) Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: mineralogical evidence and implications for a high- pressure metamorphism related to a subduction zone at the NW margin of the Archaean Congo craton. J Afr Earth Sc 149:215–234

    Google Scholar 

  • Caen-Vachette M, Vialette Y, Bassot JP, Vidal P (1988) Apport de la géochronologie à la connaissance de la géologie gabonaise. Chronique De Recherche En Minéralogie 491:35–54

    Google Scholar 

  • Castaing C, Feybesse JL, Thiéblemont D, Triboulet C, Chèvremont P (1994) Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precambr Res 69:327–344

    Google Scholar 

  • Chen RX, Zheng YF, Xie L (2010) Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th–Pb and Lu–Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114:132–154

    Google Scholar 

  • Chen M, Sun M, Cai K, Buslov MM, Zhao G (2014) Geochemical study of the Cambrian-Ordovician meta-sedimentary rocks from the northern Altai-Mongolian terrane, northwestern Central Asian Orogenic Belt: implications on the provenance and tectonic setting. J Asian Earth Sci 96:69–83

    Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PW O and Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in Mineralogy and Geochemistry 53(1):469–500

  • Cox R, Lowe DR, Cullers and RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States.Geochimica Cosmochimica Acta 59:2919-2940

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Google Scholar 

  • Cullers RL, Podkovyrov VN (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research 104:77–93

  • Danguene PEY, Ngnotue T, Ganno S, Biandja J, Kankeu B, Nzenti JP (2014) Paleoproterozoic synkinematic magnesian high-K magmatism from the Tamkoro-Bossangoa Massif along the Bossangoa-Bossembele Shear Zone in north-western Central African Republic. J Geosci Geomatics 2(4):151–164

    Google Scholar 

  • De la Roche H (1965) Sur l’existence de plusieurs faciès géochimiques dans les schistes paléozoïques des Pyrénées luchonnaises. Int J Earth Sci, Geologische Rundschau 55:274–301

    Google Scholar 

  • Devaraju TC, Sudhakara TL, Kaukonen RJ, Viljoen RP, Alapieti TT, Ahmed SA, Sivakumar S (2010) Petrology and Geochemistry of Greywackes from GoaDharwar Sector, Western Dharwar Craton: Implications for Volcanoclastic Origin. J Geol Soc India 75:465–487

    Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Asso Petrol Geol Bull 63:2164–2182

    Google Scholar 

  • El-Bialy M (2013) Geochemistry of the Neoproterozoic metasediments of Malhaq and Um Zarig formations, Kid metamorphic complex, Sinai, Egypt: implications for source-area weathering, provenance, recycling, and depositional tectonic setting. Lithos 175–176

  • Evensen NM, Hamilton PJ, O’nions RK, (1978) Rare earth abundances in chondritic meteorites. Geochimica Cosmochimica Acta 42:1199–1212

    Google Scholar 

  • Ewing TA, Hermann J, Rubatto D (2013) The robustness of the Zr-inrutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib Miner Petrol 165:757–779

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RH (2003) Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem 53:277–303

    Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154:429–437

    Google Scholar 

  • Feybesse JL, Johan V, Triboulet C, Guerrot C, Mayaga-Mikolo F, Bouchot V, Eko Ndong J (1998) The West Central African belt: a model of 2.5–2.0 Ga accretion and two-phase orogenic evolution. Precambr Res 87:161–216

    Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho basin, south Cornwall; framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc London 144:531–542

    Google Scholar 

  • Fu B, Mernagh TP, Kita NT, Kemp AI, Valley JW (2009) Distinguishing magmatic zircon from hydrothermal zircon : a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem Geol 259:131–142

    Google Scholar 

  • Garcia MGM, Santos TJS, Amaral WS (2014) Provenance and tectonic setting of Neoproterozoic suprocrustal rocks from the Ceara Central Domain, Borborema Province (NE Brazil): Constraints from geochemistry and detrital zircon ages. Int Geol Rev 56(4):481–500

    Google Scholar 

  • Garrels RM and Mackenzie FT (1971) Evolution of Sedimentary Rocks. New York, NY, USA: WW Norton and Co. Inc, New York Xvi, 397p

  • Garzanti E, Resentini A (2016) Provenance control on chemical indices of weathering (Taiwan river sands). Sed Geol 336:81–95

    Google Scholar 

  • Girty GH, Ridge DL, Knaack C, Johnson D, Al-Riyami RK (1996) Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res 66:107–118

    Google Scholar 

  • Grenholm M, Jessel M, Thébaud N (2019a) Paleoproterozoic volcano-sedimentary in the ca. 2.27-1.96 Ga birimian orogen of the southern West african craton. Precambr Res 328:161–192

    Google Scholar 

  • Grenholm M, Jessel M, Thébaud N (2019b) A geodynamic model for the Paleoproterozoic (ca. 2.276-1.96 Ga) Birimian Orogen of the southern West African Craton – insights into an evolving accretionary-collisional orogenic system. Earth Sci Rev 192:138–193

    Google Scholar 

  • Grimes C, Wooden J, Cheadle M, John B (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Miner Petrol 170:46

    Google Scholar 

  • Gu XX, Liu JM, Zheng MH, Tang JX, Qi L (2002) Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China : geochemical evidence. J Sediment Res 72(3):393–407

    Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador. Canada Geochimica Cosmochimica Acta 61:4115–4137

    Google Scholar 

  • Hegde VS, Chavadi VC (2009) Geochemistry of Late Archaean metagreywackes from the western Dharwar Craton, South India: implications for provenance and nature of the Late Archaean crust. Gondwana Res 15(2):178–187

    Google Scholar 

  • Hoskin PW (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica Cosmochimica Acta 69:637–648

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon in igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Google Scholar 

  • Hou KJ, Li YH, Tian YY (2009) In situ U-Pb zircon dating using laser ablation-multiion couting-ICP-MS. Geochim Cosmochim Acta 28:481–492

    Google Scholar 

  • Ishiga H, Nakamura T, Sampei Y, Tokuoka T, Takayasu K (2000) Geochemical record of the Holocene Jomon transgression and human activity in coastal lagoon sediments of the San’in district SW Japan. Global Planet Change 25:223–237

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  • Kwamou Wanang MM, Kouankap Nono GD, Nkouathio DG, Ayonta Kenne P (2021) Petrogenesis and U-Pb zircon dating of amphibolite in the Mewengo iron deposit, Nyong series, Cameroon: fingerprints of iron depositional geotectonic setting. Arab J Geosci 14:872. https://doi.org/10.1007/s12517-021-07235-8

    Article  Google Scholar 

  • Lan TG, Fan HR, Santosh M, Hu FF, Yang KF, Liu YS (2014) U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol Rev 56:472–486

    Google Scholar 

  • Ledru P, Eko NDong JE, Johan V, Prian JP, Coste B and Haccard D, (1989) Structural and metamorphic evolution of the Gabon orogenic belt: collision tectonics in the lower Proterozoic? Precambr Res 44:227–241

    Google Scholar 

  • Lerouge C, Cocherie A, Toteu SF, Penaye J, Milési JP, Tchameni R, Nsifa EN, Fanning M, Deloele E (2006) Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sc 44:413–427

    Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Google Scholar 

  • Liu YC, Deng LP, Gu XF, Groppo C, Rolfo F (2015) Application of Ti-in-zircon and Zr-in-rutile thermometers to constrain high temperature metamorphism in eclogites from the Dabie orogen, central China. Gondwana Res 27:410–423

    Google Scholar 

  • Liu CH, Liu FL, Shi JR, Liu PH, Yang H, Liu LS, Wang W, Tian ZH (2016) Depositional age and provenance of the Wutai Group: Evidence from zircon U-Pb and Lu–Hf isotopes and whole–rock geochemistry. Precambr Res 281:269–290

    Google Scholar 

  • Long X, Sun M, Yuan C, Xiao W, Cai K (2008) Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sed Geol 208:88–100

    Google Scholar 

  • Loose D, Schenk V (2018) 2.09 Ga old eclogites in the EburnianTransamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambr Res 304:1–1

    Google Scholar 

  • Lopez R, Cameron KL, Jones NW (2001) Evidence for Paleoproterozoic, Grenvillian, and Pan-African age Gondwanan crust beneath northeastern Mexico. Precambr Res 107:195–214

    Google Scholar 

  • Ludwing KR (2008) User’s Manual for IsoPlot 4.0: A Geochronological Toolkit forMicrosoft Excel. Berkeley Geochronology Center, Berkeley, CA

  • Madhavaraju J (2015) Geochemistry of late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleoweathering, provenance, and end Cretaceous environments. Chemostratigraphy 185–214.

  • Maslov JM, Podkovyrov VN, Mizens GA, Noshkin AD, Fazliakhmetov AM, Malinovsky AI, Khudoley AK, Kovota LN, Kuptsova AV, Gareev EZ, Zainullin RI (2016) Tectonic setting discrimination diagrams for terrigenous rocks: a comparison. Geochem Int 54(7):569–583

    Google Scholar 

  • Maurizot P (1986) Carte Géologique du Sud-Ouest Cameroun. Bureau De Recherches Géologiques Et Minières, Orlèans, Scale 1(500):000

    Google Scholar 

  • Maurizot P, Abessolo A, Feybesse JL and Johan LP (1986) Etude de prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985.Rapport De BRGM 85:274

  • Mbale Ngama E, Sababa E, Bayiga EC, Ekoa Bessa AZ, Ndjigui P-D, Bilong P (2019) Mineralogical and geochemical characterization of the unconsolidated sands from the Mefou River terrace, Yaoundé area, Southern Cameroon. Journal of African Earth Sciences 159:103570

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–22

    Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK and Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, MJ, Basu A (eds), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper 284, 120: 21–40

  • McLennan SM, Bock B, Hemming SR, Hurowitz JA, Steven ML and McDaniel DK (2003) The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz DR (ed.) Geochemistry of sediments and sedimentary rocks/ evolutionary considerations to mineral deposit-forming environment. Geological association of Canada 184–190

  • McLennan, SM (1989) Rare earth elements in sedimentary rocks : influence of provenance and sedimentary processes. In : Lipin, B.R., McKay, G.A. (eds.), Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy Geochemistry 169–200

  • Meng E, Wang CY, Yang H, Cai J, Ji L, Li YG (2017) Paleoproterozoic metavolcanic rocks in the Ji’an Group and constraints on the formation and evolution of the northern segment of the Jiao-Liao-Ji Belt, China. Precambr Res 294:133–150

    Google Scholar 

  • Mongelli G, Critelli S, Perri F, Sonnino M, Perrone V (2006) Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks Peloritani Mountains, Southern Italy. Geochem J 40:197–209

    Google Scholar 

  • Morin JCh, Boudzoumou F, Djama LM, Gioan P, Michard A, Mpemba-Bon J, Vicat JP (1991) La chaîne protérozoïque ouest Congolienne et son avant-pays au Congo : nouvelles données géochronologiques et structurales, implications en Afrique centrale. Comptes Rendu De L’académie Des Sciences De Paris 312:1327–1334

    Google Scholar 

  • Moudioh C, Soh Tamehe L, Ganno S, Nzepang Tankwa M, Soares BM, Rupam G, Kankeu B and Nzenti J P (2020) Tectonic setting of the Bipindi greenstone belt, northwest Congo craton, Cameroon: Implications on BIF deposition. J African Earth Sci 171:103971

  • Ndema Mbongue JL, Ngnotue T, Ngo Nlend CD, Nzenti JP, Cheo Suh E (2014) Origin and Evolution of the Formation of the Cameroon Nyong Series in the Western Border of the Congo Craton. J Geosci Geomat 2:62–75

    Google Scholar 

  • Ndjigui PD, Ebah Abeng SA, Ekomane E, Nzeukou NA, Ngo Mandeng FS, Lindjeck MM (2015) Mineralogy and geochemistry of pseudogley soils and recent alluvial clastic sediments in the NgogLituba region, southern Cameroon: an implication to their genesis. J Afr Earth Sc 108:1–14

    Google Scholar 

  • Nédélec A, Minyem D and Barbey P (1993) High P-high T anatexis of Archaean tonalitic grey gneisses: The Eseka migmatites, Cameroon. Precambrian Research 62, 191–205

  • Nesbitt HW, Young G (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Google Scholar 

  • Neves SP, Bruguier O, Vauchez A, Bosch D, Rangel da Silva JM, Mariano G (2006) Timing of crust formation, deposition of supracrustal sequences, and TransAmazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): implications for western Gondwana assembly. Precambr Res 149:197–216

    Google Scholar 

  • Nga Essomba Tsoungui PE, Ganno S, Tanko Njiosseu EL, Ndema Mbongue JL, Kamguia Woguia B, Soh Tamehe L, Takodjou Wambo JD, Nzenti JP (2020) Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area SW Cameroon. Acta Geochimica 39(3):404–422

    Google Scholar 

  • Nga Essomba Tsoungui PE (2020) Evolution tectono-métamorphique des formations précambriennes de minlongo-lolodorf (Région du Sud-Cameroun). Ph.D. thesis, University of Yaounde I, 205 p

  • Ngoniri AH, Ngnotue T, Tanko Njiosseu EL, Kenne Ayonta P, Ganno S, Nzenti JP (2020) Geochemistry of the Neoproterozoic Mbondo-Ngazi Tina Metasediments, Adamawa Area, Central Cameroon : Source Provenance and Tectonic Setting. J Geosci Geomatics 8(2):94–109

    Google Scholar 

  • Nsangou MN, Owona S, Owono FM, Ateba CB, Ondoa JM and Ekodeck GE (2019) Evolution of the Edea-Eseka geomorphic units: A 'natural laboratory' of a prototype active rifting cross-cutting the Southern Cameroon (West African) passive margin. Geol J 1–25. https://doi.org/10.1002/gj.3717

  • Nzenti JP, Barbey P, Macaudiere J, Soba D (1988) Origin and evolution of late Precambrian high - grade Yaounde gneisses (Cameroon). Precambr Res 38:91–109

    Google Scholar 

  • Nzenti JP, Njiosseu Tanko EL, Nzina Nchare A (2007) The metamorphic evolution of the Paleoproterozoic high grade Banyo gneisses (Adamawa, Cameroon, Central Africa). J Camer Acad Sci 7:95–109

    Google Scholar 

  • Nzepang Tankwa M, Ganno S, Akindeji OO, Tanko Njiosseu EL, Soh Tamehe L, Kamguia Woguia B, Motto Mbita AS and Nzenti JP (2020) Petrogenesis and tectonic setting of the Paleoproterozoic Kelle Bidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology. Int Geol Rev 1–21

  • Ogunyele AC, Obaje SO, Akingboye AS, Adeola AO, Babalola AO, Olunfunmilayo AT (2020) Petrography and geochemistry of Neoproterozoic charnockite-granite association and metasedimentary rocks around okpella, southern Nigeria. Arab J Geosci 13:780

    Google Scholar 

  • Owona S, Mvondo Ondoa J, Ratschbacher L, Mbola Ndzana SP, Tchoua MF, Ekodeck GE (2011) The geometry of the Archaean, Paleo- and Neoproterozoic tectonics in the Southwest Cameroon. Compte Rendu Des Geosciences 343:312–322

    Google Scholar 

  • Owona S, Ratschbacher L, Gulzar MA, Nsangou Ngapna M, Mvondo Ondoa J and Ekodeck GE (2020) New U-Pb zircon ages of Nyong Complex meta-plutonites: inferences on the Eburnean/Trans-Amazonian orogeny in SW Cameroon (Central Africa). Geological Journal 1–15

  • Owona S, Ratschbacher L, Nsangou Ngapna M, Gulzar AM, Mvondo Ondoa J and Ekodeck GE (2021) How diverse is the source? Age, provenance, reworking, and overprint of Precambrian meta-sedimentary rocks of West Gondwana, Cameroon, from zircon U-Pb geochronology. Precambrian Research 359: 106220

  • Parra-Avila LA, Kemp AIS, Fiorentini ML, Belousova E, Baratoux L, Block S, Jessell M, Bruguier O, Begg GC, Miller J, Davis J, McCuaig TC (2017) The geochronological evolution of the paleoproterozoic baoulé-mossi domain of the southern West african craton. Precambr Res 300:1–27

    Google Scholar 

  • Paul SK (2001) Geochemistry of bottom sediments from a riverestuary-shelf mixing zone on the tropical southwest coast India. Bull Geol Survey Japan 52:371–382

    Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounté J, Ganwa A, Miyem D, Nsifa EN (2004) The 2.1 Ga west Central African Belt in Cameroon: extension and evolution. J Afr Earth Sc 39:159–164

    Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1972) Sand and Sandstone. Springer -Verlag, New York, p 553

    Google Scholar 

  • Peucat JJ, Barbosa JSF, Araújo Pinho IC, Paquette JL, Martin H, Fanning CM, Menezes Leal AB, Cruz CPS (2011) Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil): Nd isotopes and U-Pb zircon ages. J S Am Earth Sci 31:397–413

    Google Scholar 

  • Pouclet A, Tchameni R, Mezger K, Vidal M, Nsifa EN, Shang CK, Penaye J (2007) Archaean crustal accretion at the northern border of the Congo craton (South Cameroon), The charnockite-TTG link. Bullettin De La Société Géologique De France 178:331–342

    Google Scholar 

  • Rivera-Gómez MA, Armstrong-Altrin JS, Verma SP, Díaz-González L (2020) APMdisc : An online computer program for the geochemical discrimination of siliciclastic sediments from active and passive margins. Turkish J Earth Sci 29:550–578

    Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Google Scholar 

  • Roser BP, Cooper RA, Nathan S, Tulloc AJ (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. J Geol Geophys 39:1–16

    Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (2016) Experimental constraints on the formation of silicic magmas. Elements 12(2):109–114

    Google Scholar 

  • Shang CK, Liégeois JP, Satir M, Frisch W, Nsifa EN (2010) Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo craton, Southern Cameroon : Evidence for Pb-loss due to non-metamorphic causes. Gondwana Res 18(2–3):337–355

    Google Scholar 

  • Soh TL, Nzepang Tankwa M, Chongtao W, Ganno S, Ngnotue T, kouankap Nono GD, Shaamu JS, Zhang J and Nzenti JP, (2018) Geology and geochemical constrains on the origin and depositional setting of the Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geol Rev 95:620–638

    Google Scholar 

  • Soh Tamehe L, Wei C, Ganno S, Rosiere CA, Nzenti JP, Ebotehouna CG, Lu G (2021) Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: Insights from isotopic, geochemical and geochronological studies of drill core sample. Geosci Frontière 12:549–572

    Google Scholar 

  • Song DF, Xiao WJ, Han CM, Tian ZH, Wang ZM (2013) Provenance of metasedimentary rocks from the Beishan orogenic collage, southern Altaids: Constraints from detrital zircon U-Pb and Hf isotopic data. Gondwana Res 24:1127–1151

    Google Scholar 

  • Tanko Njiosseu EL, Nzenti JP, Njanko T, Kapajika B, Nedelec A (2005) New U-Pb Zircon ages from Tonga (Cameroon): Coexisting Eburnean Transamazonian (2.1 Ga) and Pan-African (0,6 Ga) imprints. Compte Rendu Des Géosciences 337:551–562

    Google Scholar 

  • Tanko Njiosseu EL, Danguene PE, Ngnotue T, Ganno S, Kouankap Nono GD, Ngo Nlend CD, Kankeu B, Biandja J, Nzenti JP (2021) Petrology and geochronology of metamorphic rocks from the Bossangoa-Bossembélé area, Northern Central African Republic—evidence for Palaeoproterozoic high-grade metamorphism in the North Equatorial Fold Belt. Arab J Geosci 14 :1660. https://doi.org/10.1007/s12517-021-08043

  • Tarney J (1977) Petrology, Mineralogy and Geochemistry of the Farkland Plateau Basement Rocks. Site 330 Deep Sea Drilling Project, Initial Report 36:893-921

  • Tchameni R, Pouclet A, Mezger K, Nsifa NE, Vicat JP (2004) Monozircon and Sm-Nd whole rock ages from the Ebolowa greenstone belts : Evidence for the terranes older than 2.9 Ga in the Ntem Complex (Congo craton, South Cameroon). J Camer Acad Sci 4:213–224

    Google Scholar 

  • Tchameni R, Mezger K, Nsifa NE and Pouclet A (2001) Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos 57(1):23-42

  • Teixeira W, Oliveira EP, Dantas PP, EI and Hollanda MHBM, (2017) Ub-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences. Precambr Res 293:91–111

    Google Scholar 

  • Thiart C and Maarten, J de Wit (2006) Fingerprinting the metal endowment of early continental crust to test for secular changes in global mineralization. Geol Soc Am Memoir 198

  • Toteu SF, Van Schmus WR, Pénaye J, Nyobe JB (1994) U-Pb and Sm–Nd evidence for Eburnean and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambr Res 67:321–347

    Google Scholar 

  • Toteu SF, Van Schumus WR, Penaye J, Michard A (2001) New U-Pb and Sm-Nd data from North-Central Cameroon and its bearing on the pre-pan African history of Central Africa. Precambr Res 108:45–73

    Google Scholar 

  • Trail D, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica Cosmochimica Acta 97:70–87

    Google Scholar 

  • Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionnation of basaltic magma : an example from the Padthaway Ridge, South Australia. Lithos 28:151–179

    Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:117–133

    Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2016) Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sed Geol 332:1–12

    Google Scholar 

  • Verma SP, Díaz-González L, Armstrong-Altrin JS (2016a) Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments.Earth Science Informatics 9 (2): 151–165.

  • Vicat JP, Pouclet A and Nsifa E (1998) Les dolérites du groupe du Ntem (Sud Cameroun) et des régions voisines (Centrafrique, Gabon, Congo, Bas Zaïre) : Caractéristiques géochimiques et place dans l’évolution du craton du Congo au Protérozoïque. In : Vicat JP and Bilong P (eds), Géologie et environnements au Cameroun. Collection GEOCAM 1999 :305–324

  • Vosoughi Moradi A, Sari A, Akkaya P (2016) Geochemistry of the Miocene oil shale (Hançilli Formation) in the Çankiri-Çorum Basin, Central Turkey: implications for paleoclimate conditions, source-area weathering, provenance, and tectonic setting. Sed Geol 78:136–150

    Google Scholar 

  • Wang W, Liu SW, Santosh M, Wang GH, Bai X, Guo RR (2015) Neoarchaean intra–oceanic arc system in the Western Liaoning Province: Implications for early Precambrian crustal evolution in the Eastern Block of the North China Craton. Earth Sci Rev 150:329–364

    Google Scholar 

  • Wu YB and Zheng YF (2004) Genesis of zircon and its constraints on interpretation of U–Pb age. Chin Sci Bull 1554–1569

  • Xia QX, Zheng YF, Yuan H, Wu FY (2009) Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen China. Lithos 112:477–496

    Google Scholar 

  • Zhai MG, Santosh M (2011) The early Precambrian odyssey of the north China Craton : a synoptic overview. Gondwana Res 20:6–25

    Google Scholar 

  • Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang JH, Yin CQ (2012) Amalgamation of the North China Craton: key issues and discussion. Precambr Res 222–223:55–76

    Google Scholar 

Download references

Acknowledgements

This study is a part of the first author PhD thesis research work at the University of Yaoundé 1. We gratefully acknowledge the editors for the handling of the manuscript. The authors are grateful to Dr. Ekoa Armel for his helpful assistance in drawing specific diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gus Djibril Kouankap Nono.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woguia, B.K., Nono, G.D.K., Tsoungui, P.E.N.E. et al. Geochemistry and U–Pb zircon age of the Paleoproterozoic metasedimentary rocks from the Bidou I, Nyong Series, Cameroon: Implications for provenance and tectonic setting. Arab J Geosci 15, 154 (2022). https://doi.org/10.1007/s12517-022-09476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-09476-7

Keywords

Navigation