Skip to main content

Advertisement

Log in

Groundwater recharge assessment in an arid region through chloride mass balance and unsaturated numerical modelling: the Kasserine Aquifer System

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Groundwater recharge is one of the most important terms of water budget, and its assessment is crucial for groundwater management and protection. Several methods have been tested for different climatic and hydrogeological conditions for both diffuse and focused recharge. The present paper proposes to combine a geochemical technique and a numerical modelling method to estimate diffuse recharge rates in an arid region using climatic and soil dataset. Located in an arid region in Central Tunisia, the Kasserine Aquifer System (KAS) is a transboundary aquifer extending into the northeast of Algeria. The main regional reservoir of the KAS is the deep Miocene sandstone representing the main available source of water supply in the area. This research aims to estimate recharge in an arid context. Chloride mass balance (CMB) in both unsaturated zone and groundwater and numerical modelling are the retained methods to fulfil these objectives. The variably saturated model HYDRUS-1D was calibrated using field and climate data at a daily scale for a long period. CMB and model calculations showed that recent recharge rates were between 0.6 and 20 mmyr−1, representing a groundwater recharge percentage between 0.2 and 6.7% of the rainfall. This work evaluates the groundwater recharge using geochemical and numerical methods which knowledge is pivotal for future investigations on groundwater resources management plans for the KAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adomako D, Maloszewski P, Stumpp C, Osae S, Akiti TT (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu river basin, Ghana. Hydrol Sci J 55:1405–1416. https://doi.org/10.1080/02626667.2010.527847

    Article  Google Scholar 

  • Alaoui A, Eugster W (2004) Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse river delta, Switzerland. Hydrogeol J 12:464–475. https://doi.org/10.1007/s10040-003-0288-y

    Article  Google Scholar 

  • Alcalá FJ, Cantón Y, Contreras S, Were A, Serrano-Ortiz P, Puigdefábregas J, Solé-Benet A, Custodio E, Domingo F (2011) Diffuse and concentrated recharge evaluation using physical and tracer techniques: results from a semiarid carbonate massif aquifer in southeastern Spain. Environmental Earth Sciences 62:541–557. https://doi.org/10.1007/s12665-010-0546-y

    Article  Google Scholar 

  • Allemmoz M, Olive P (1980) Recharge of groundwaters in arid areas case of the Djeffara plain in Tripolitania, Libyan Arab Jamahiriya. In: Arid Zone Hydrology Investigations with Isotopic Techniques. IAEA Vienna, pp 181–191

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Fao, Rome 300:D05109

    Google Scholar 

  • Allison G, Hughes M (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Soil Research 16:181–195

    Article  Google Scholar 

  • Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58:6–14. https://doi.org/10.2136/sssaj1994.03615995005800010002x

    Article  Google Scholar 

  • Assefa KA (2013) Groundwater recharge modelling: linkage to aquifers and implications for water resources management and policy. PhD dissertation, Department of Civil Engineering, University of Manitoba, Winnipeg, Canada.

  • Bazuhair AS, Wood WW (1996) Chloride mass-balance method for estimating ground water recharge in arid areas: examples from western Saudi Arabia. J Hydrol 186:153–159. https://doi.org/10.1016/S0022-1694(96)03028-4

    Article  Google Scholar 

  • Besbes M, Delhomme JP, De Marsily G (1978) Estimating recharge from ephemeral streams in arid regions: A case study at Kairouan, Tunisia. Water Resour Res 14:281–290. https://doi.org/10.1029/WR014i002p00281

    Article  Google Scholar 

  • Blandenier L (2015) Recharge quantification and continental freshwater lens dynamics in arid regions: application to the merti aquifer (eastern Kenya). Université de Neuchâtel, PhD

    Google Scholar 

  • Cao G, Scanlon BR, Han D, Zheng C (2016) Impacts of thickening unsaturated zone on groundwater recharge in the North China Plain. J Hydrol 537:260–270. https://doi.org/10.1016/j.jhydrol.2016.03.049

    Article  Google Scholar 

  • Cartwright I, Cendón D, Currell M, Meredith K (2017) A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. J Hydrol 555:797–811. https://doi.org/10.1016/j.jhydrol.2017.10.053

    Article  Google Scholar 

  • Dassi L (2010) Use of chloride mass balance and tritium data for estimation of groundwater recharge and renewal rate in an unconfined aquifer from North Africa: a case study from Tunisia. Environmental Earth Sciences 60:861–871. https://doi.org/10.1007/s12665-009-0223-1

    Article  Google Scholar 

  • De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17. https://doi.org/10.1007/s10040-001-0171-7

    Article  Google Scholar 

  • Delin GN, Healy RW, Lorenz DL, Nimmo JR (2007) Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA. J Hydrol 334:231–249. https://doi.org/10.1016/j.jhydrol.2006.10.010

    Article  Google Scholar 

  • Diouf O, Faye S, Diedhiou M, Kaba M, Faye S, Gaye CB, Faye A, Englert A, Wohnlich S (2012) Combined uses of water-table fluctuation (WTF), chloride mass balance (CMB) and environmental isotopes methods to investigate groundwater recharge in the Thiaroye sandy aquifer (Dakar, Senegal). African Journal of Environmental Science and Technology ), pp 425–437, November 2012 Vol. 6:425–437. doi:https://doi.org/10.5897/AJEST12.100

  • Edmunds WM, Darling WG, Kinniburgh DG (1988) Solute profile techniques for recharge estimation in semi-arid and arid terrain. In: Simmers I (ed) Estimation of Natural Groundwater Recharge. Springer, Netherlands, Dordrecht, pp 139–157

    Chapter  Google Scholar 

  • Edmunds WM, Gaye C, Fontes J-C (1992) A record of climatic and environmental change contained in interstitial waters from the unsaturated zone of northern Senegal. Isotope techniques in water resources development 1991

  • Edmunds WM. (2001) Investigation of the unsaturated zone in semi-arid regions using isotopic and chemical methods and applications to water resource problems. In isotope based assessment of groundwater renewal in water scarce regions, IAEA-Tecdoc-1246, Yurtsever Y(ed.). IAEA: Vienna; p. 7 – 22.

  • Edmunds WM (2001) Mechanisms, timing and quantities of recharge to groundwater in semi-arid and tropical regions. International Atomic Energy Agency (IAEA). pp 77–88

  • Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J Hydrol 7:178–197. https://doi.org/10.1016/0022-1694(69)90055-9

    Article  Google Scholar 

  • Flint AL, Flint LE, Kwicklis EM, Fabryka-Martin JT, Bodvarsson GS (2002) Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeol J 10:180–204. https://doi.org/10.1007/s10040-001-0169-1

    Article  Google Scholar 

  • Gates JB, Edmunds WM, Ma J, Scanlon BR (2008) Estimating groundwater recharge in a cold desert environment in northern China using chloride. Hydrogeol J 16:893–910. https://doi.org/10.1007/s10040-007-0264-z

    Article  Google Scholar 

  • Gaye CB, Edmunds WM (1996) Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal. Environ Geol 27:246–251. https://doi.org/10.1007/BF00770438

    Article  Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2:255–266. https://doi.org/10.1002/hyp.3360020306

    Article  Google Scholar 

  • Ghouili N, Horriche FJ, Zammouri M, Benabdallah S, Farhat B (2017) Coupling WetSpass and MODFLOW for groundwater recharge assessment: case study of the Takelsa multilayer aquifer, northeastern Tunisia. Geosciences Journal 21:791–805. https://doi.org/10.1007/s12303-016-0070-5

    Article  Google Scholar 

  • Grinevskiy SO, Pozdniakov SP (2013) The use of hydrus-1d for groundwater recharge estimation in boreal environments. HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems 107:1–13

    Google Scholar 

  • Grismer ME, Bachman S, Powers T (2000) A comparison of groundwater recharge estimation methods in a semi-arid, coastal avocado and citrus orchard (Ventura County, California). Hydrol Process 14:2527–2543. https://doi.org/10.1002/1099-1085(20001015)14:14%3c2527::AID-HYP112%3e3.0.CO;2-T

    Article  Google Scholar 

  • Hassen I, Gibson H, Hamzaoui-Azaza F, Negro F, Rachid K, Bouhlila R (2016a) 3D geological modeling of the Kasserine aquifer system, Central Tunisia: new insights into aquifer-geometry and interconnections for a better assessment of groundwater resources. J Hydrol 539:223–236. https://doi.org/10.1016/j.jhydrol.2016.05.034

    Article  Google Scholar 

  • Hassen I, Hamzaoui-Azaza F, Bouhlila R (2016b) Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, central Tunisia. Environ Monit Assess 188:135. https://doi.org/10.1007/s10661-016-5124-7

    Article  Google Scholar 

  • Hassen I, Hamzaoui-Azaza F, Bouhlila R (2018) Hydrogeochemical and isotopic investigations for evaluation of the impact of climate change on groundwater quality, a case study of the Plaine of Kasserine, Central Tunisia. In: Calvache ML, Duque C, Pulido-Velazquez D (eds) Groundwater and global change in the western Mediterranean area. Springer International Publishing, Cham, pp 151–160

    Chapter  Google Scholar 

  • Hassen I, Hamzaoui F, Bouhlila R (2016c) Groundwater quality of Feriana-Skhirat in Central Tunisia and its sustainability for agriculture and drinking purposes: Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27–29 July 2016). pp 69–75

  • Hassen I, Milnes E, Gibson H, Bouhlila R (2019) Impact of groundwater flow across tectonic aquifer compartments in a Miocene sandstone aquifer: three-dimensional hydrogeological modeling of the Kasserine aquifer system in central Tunisia and northeastern Algeria. Hydrogeology Journal. https://doi.org/10.1007/s10040-019-01931-2

  • Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. https://doi.org/10.1007/s10040-001-0178-0

    Article  Google Scholar 

  • Healy RW (2010) Estimating groundwater recharge: hydrological cycle: principles and applications. Cambridg University Press hydrological cycle: Principles and applications – Volume 4: Groundwater. IAEA, Vienna. 256 pp

  • Khanfir R (1980) Contribution à l’étude hydrogéologique de la région d’Oum Ali Thelepte (Kasserine). Ph.D. Thesis, University of Pierre and Marie Curie, France

  • Kohfahl C, Molano-Leno L, Martínez G, Vanderlinden K, Guardiola-Albert C, Moreno L (2019) Determining groundwater recharge and vapor flow in dune sediments using a weighable precision meteo lysimeter. Sci Total Environ 656:550–557. https://doi.org/10.1016/j.scitotenv.2018.11.415

    Article  Google Scholar 

  • Kumar P, Thakur PK, Bansod BKS, Debnath SK (2018) Groundwater: a regional resource and a regional governance. Environ Dev Sustain 20:1133–1151. https://doi.org/10.1007/s10668-017-9931-y

    Article  Google Scholar 

  • Lerner D (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. In: Issar A, Simmers I (eds). Heise, Hannover, West Germany

  • Lerner ND (2003) Surface water-groundwater interactions in the context of groundwater resources. in Xu Y and HE Beekman, editors Groundwater recharge estimation in Southern Africa. UNESCO Paris. pp 91–108

  • Liu G, Wang Y, Zhang Y, Song TAO (2009) Application of chloride profile and water balance methods in estimating groundwater recharge in Luanjing irrigation area, Inner Mongolia / Application des méthodes du profil de chlorure et du bilan hydrique pour l’estimation de la recharge hydrogéologique dans le Périmètre Irrigué de Luanjing, Mongolie Intérieure. Hydrol Sci J 54:961–973. https://doi.org/10.1623/hysj.54.5.961

    Article  Google Scholar 

  • Lo Russo S, Zavattaro L, Acutis M, Zuppi GM (2003) Chloride profile technique to estimate water movement through unsatured zone in a cropped area in subhumid climate (Po Valley—NW Italy). J Hydrol 270:65–74. https://doi.org/10.1016/S0022-1694(02)00278-0

    Article  Google Scholar 

  • Lu X, Jin M, van Genuchten MT, Wang B (2011) Groundwater recharge at five representative sites in the Hebei Plain, China. Groundwater 49:286–294. https://doi.org/10.1111/j.1745-6584.2009.00667.x

    Article  Google Scholar 

  • Moeck C, von Freyberg J, Schirmer M (2018) Groundwater recharge predictions in contrasted climate: the effect of model complexity and calibration period on recharge rates. Environ Model Softw 103:74–89. https://doi.org/10.1016/j.envsoft.2018.02.005

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522. https://doi.org/10.1029/WR012i003p00513

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072. https://doi.org/10.1126/science.1128845

    Article  Google Scholar 

  • Phillips FM (1994) Environmental tracers for water movement in desert soils of the American southwest. Soil Sci Soc Am J 58:15–24. https://doi.org/10.2136/sssaj1994.03615995005800010003x

    Article  Google Scholar 

  • Rhoades J, Chanduvi F, Lesch S (1999) Soil salinity assessment: methods and interpretation of electrical conductivity measurements. Food & Agriculture Org

  • Richts A, Vrba J (2016) Groundwater resources and hydroclimatic extremes: mapping global groundwater vulnerability to floods and droughts. Environmental Earth Sciences 75:926. https://doi.org/10.1007/s12665-016-5632-3

    Article  Google Scholar 

  • Sanford WE, Wood WW (2001) Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrogeol J 9:358–366. https://doi.org/10.1007/s100400100137

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39. https://doi.org/10.1007/s10040-001-0176-2

    Article  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370. https://doi.org/10.1002/hyp.6335

    Article  Google Scholar 

  • Schaap MG, Leij FJ, van Genuchten MT (2001) Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176. https://doi.org/10.1016/S0022-1694(01)00466-8

    Article  Google Scholar 

  • Šimůnek J (2015) Estimating groundwater recharge using HYDRUS-1D. Engineering Geology and Hydrogeology 29:25–36

    Google Scholar 

  • Šimůnek J, van Genuchten MT, Šejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone Journal 7:587–600. https://doi.org/10.2136/vzj2007.0077

    Article  Google Scholar 

  • Slama F, Gargouri-Ellouze E, Bouhlila R (2020) Impact of rainfall structure and climate change on soil and groundwater salinization. Clim Change 163:395–413. https://doi.org/10.1007/s10584-020-02789-0

    Article  Google Scholar 

  • Slama F (2010) Field experimentation and modelling of salts transfer in Korba coastal plain: impact of seawater intrusion and irrigation practices. PhD Thesis., University of Neuchatel, Centre of Hydrogeology, 112pp

  • Small EE (2005) Climatic controls on diffuse groundwater recharge in semiarid environments of the southwestern United States. Water Resources Research 41. https://doi.org/10.1029/2004WR003193

  • Smerdon BD, Mendoza CA, Devito KJ (2008) Influence of subhumid climate and water table depth on groundwater recharge in shallow outwash aquifers. Water Resources Research 44. https://doi.org/10.1029/2007WR005950

  • Sorman AU, Abdulrazzak MJ, Morel-Seytoux HJ (1997) Groundwater recharge estimation from ephemeral streams. Case study: Wadi Tabalah, Saudi Arabia. Hydrological Processes 11:1607. doi:https://doi.org/10.1002/(sici)1099-1085(19971015)11:12<1607::aid-hyp490>3.0.co;2-q

  • Stone A, Edmunds W (2012) Sand, salt and water in the Stampriet basin, Namibia: calculating unsaturated zone (Kalahari dunefield) recharge using the chloride mass balance approach. Water SA 38:367–378

    Article  Google Scholar 

  • Thorhnwaite C, Matter J (1955) The water balance, publication in climatology. Centerton: Drexel Institute of Technology

  • Tonkul S, Baba A, Şimşek C, Durukan S, Demirkesen AC, Tayfur G (2019) Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz basin in Turkey. Environ Monit Assess 191:610. https://doi.org/10.1007/s10661-019-7792-6

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Walker D, Parkin G, Schmitter P, Gowing J, Tilahun SA, Haile AT, Yimam AY (2019) Insights from a multi-method recharge estimation comparison study. Ground Water 57:245–258. https://doi.org/10.1111/gwat.12801

    Article  Google Scholar 

  • Wood WW (1999) Use and misuse of the chloride-mass balance method in estimating ground water recharge. Groundwater 37:2–3. https://doi.org/10.1111/j.1745-6584.1999.tb00949.x

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Groundwater 33:458–468. https://doi.org/10.1111/j.1745-6584.1995.tb00302.x

    Article  Google Scholar 

  • Yangui H, Zouari K, Trabelsi R, Rozanski K (2011) Recharge mode and mineralization of groundwater in a semi-arid region: Sidi Bouzid plain (central Tunisia). Environmental Earth Sciences 63:969–979

    Article  Google Scholar 

  • Yermani M, Chkir N, Zouari K, Michelot J-L, Moumni L (2009) Environmental tracers as indicators of water fluxes through the unsaturated zone in semi-arid regions: the case of Gafsa plain (Southern Tunisia). J Environ Hydrol 17:31

    Google Scholar 

  • Zagana E, Obeidat M, Kuells C, Udluft P (2007) Chloride, hydrochemical and isotope methods of groundwater recharge estimation in eastern Mediterranean areas: a case study in Jordan. Hydrol Process 21:2112–2123. https://doi.org/10.1002/hyp.6390

    Article  Google Scholar 

  • Zhang GH, Fei YH, Shen JM, Yang LZ (2007) Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater. 38:611-617

  • Zhu B, Wang X, Rioual P (2017) Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China. J Hydrol 549:92–113. https://doi.org/10.1016/j.jhydrol.2017.03.058

    Article  Google Scholar 

  • Zouari K, Fontes JC, Aranyossy JF, Mamou A (1985) Isotopic and geochemical study of the soil moisture movement in the unsaturated zone in semi-arid climate (Southern Tunisia). stable and radioactive isotopes in the study of the unsaturated soil zone (IAEA-TECDOC-357). International Atomic Agency, Vienna, pp 121–143

    Google Scholar 

Download references

Acknowledgements

The authors thank Pr. Pierre Perrochet, Dr. Ellen Milnes, and Dr. Fathi Bouksila and all the member of the laboratory of the Centre of Hydrogeology and Geothermic (CHYN) in Neuchatel in Switzerland and the laboratory of INERGREF in Tunisia for their contribution to the soil and geochemical analyses. The authors gratefully thank the National Society of Drinking Water in Tunisia (SONEDE), the Resources Water Direction of Tunis (DGRE), and the Regional Direction of Agriculture and Water Resources of Kasserine (CRDA Kasserine).

Funding

This study was supported by the CILIUM project funded by the Swiss government and the LMHE laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fairouz Slama.

Ethics declarations

Conflict of interest

The authors no competing interests.

Additional information

Responsible Editor: Claude Hammecker

This article is part of the Topical Collection on Water Quality, Global Changes and Groundwater Responses

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassen, I., Slama, F. & Bouhlila, R. Groundwater recharge assessment in an arid region through chloride mass balance and unsaturated numerical modelling: the Kasserine Aquifer System. Arab J Geosci 14, 2282 (2021). https://doi.org/10.1007/s12517-021-08522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-08522-0

Keywords

Navigation