Skip to main content

Advertisement

Log in

Integration of gravity and magnetic inversion for geothermal system evaluation in Suli and Tulehu, Ambon, eastern Indonesia

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The geothermal field of Suli and Tulehu is located in the eastern part of the Ambon Island, administratively situated in central Maluku regency, Maluku province, Indonesia. In the year 2017, the measurement of the Earth’s gravity and magnetic field has been done to evaluate the geothermal system in Suli and Tulehu. The application of gravity and magnetic methods was applied to determine the subsurface geological model describing geothermal sources, reservoirs, and faulting as a fluid conduit in the study area. Bouguer anomalies are positive in the range from 93 to 105 mGal, while magnetic anomalies are negative to positive in the range from − 656 to 310 nT, generally southwest to northeast. Geothermal manifestations in the form of hot springs associated with low residual Bouguer and magnetic anomalies positioned on the Banda-Hatuasa, Banda, and Huwe fault lines related to the alteration zone. Euler deconvolution analysis of the complete Bouguer anomaly data shows the maximum depth of fault detected at 1200 m. Gravity and magnetic inversion show high density and susceptibility contrast of rocks associated with Eriwakang and Simalopu pyroclastic rocks as geothermal sources. Low density and susceptibility contrast is estimated to be geothermal reservoirs due to interactions with geothermal source rocks below. A geological conceptual model based on the inversion modeling of gravity and magnetic data provides clear and comprehensive information on the geothermal systems in Suli and Tulehu, Ambon, the eastern part of Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author with a reasonable request.

References

  • Abdel Zaher M, Saibi H, Mansour K, Khalil A, Soliman M (2018) Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt. Renew Sustain Energy Rev 82:3824–3832. https://doi.org/10.1016/j.rser.2017.10.088

    Article  Google Scholar 

  • Araffa SAS, El-bohoty M, Abou Heleika M, Mekkawi M, Ismail E, Khalil A, Abd EL-Razek EM (2017) Implementation of magnetic and gravity methods to delineate the subsurface structural features of the basement complex in Central Sinai area, Egypt. NRIAG J Astron Geophys 7:162–174

    Article  Google Scholar 

  • Baranov V, Naudy H (1964) Numerical calculation of the formula of reduction to the magnetic pole. Geophysics 29:67–79

    Article  Google Scholar 

  • Beyhan G, Keskinsezer A (2016) Investigation of the gravity data from Fethiye–Burdur fault zone using the Euler deconvolution technique. Geomech Geophys Geo-Energ Geo-Resour 2:195–201. https://doi.org/10.1007/s40948-016-0028-0

    Article  Google Scholar 

  • Charlton RT (2010) The Pliocene-recent anticlockwise rotation of the bird’s head, the opening of the Aru trough—Cendrawasih Bay Spenochasm, and the closure of the Banda double arc. In Proceedings of the IPA Thirty-Fourth Annual Convention an Exhibition, Jakarta, Indonesia, 18–20 May 2010

  • Cooper JRG (2004) Euler deconvolution applied to potential field gradients. Explor Geophys 35(3):165–170

    Article  Google Scholar 

  • Curewitz D, Karson AJ (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79:149–168

    Article  Google Scholar 

  • Fathoni IM (2017) Identifikasi Fitur Sistem Panas Bumi Menggunakan Pemodelan 2.5 D dan Analisis Derivatif pada Data Gravitasi di daerah Prospek Panas Bumi, Tulehu, Maluku. Bachelor Thesis of Geofisika UGM. Yogyakarta

  • FitzGerald D, Reid A, McInerny P (2004) New discrimination techniques for Euler deconvolution. Comput Geosci 30:461–469

    Article  Google Scholar 

  • Fregoso BE, García AJ (2015) Structural joint inversion coupled with Euler deconvolution of isolated gravity and magnetic anomalies. Geophysics 80(2):G67–G79

    Article  Google Scholar 

  • Gomez-Ortiz D, Blanco-Montenegro I, Arnoso J, Martin-Crespo T, Solla M, Montesinos F, Vélez E, Sánchez N (2019) Imaging Thermal Anomalies in Hot Dry Rock Geothermal Systems from Near-Surface Geophysical Modelling. Remote Sens 11(6):675

  • Gupta H, Roy S (2007) Geothermal energy—an alternative resource for the 21st century. UK: Elsevier. p. 1–271

  • Hamilton W (1979) Tectonics of the Indonesian region. U.S. Geological Survey, Prof. Pap. 1078, 345 pp

  • Hochstein MP, Sudarman S (2008) History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics. 37(3):220–266. https://doi.org/10.1016/j.geothermics.2008.01.001

    Article  Google Scholar 

  • Hohmann GW, Raiche AP (1988) Inversion of controlled-source electromagnetic data. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 1. Theory. Soc. of Expl. Geophys, Tulsa, pp 469–503

    Google Scholar 

  • Honthaas C, Maury CR, Priadi B, Bellom H, Cotten J (1999) The Plio – Quaternary Ambon arc , Eastern Indonesia. Tectonophysics 301:261

    Article  Google Scholar 

  • Jupp DLB, Vozoff K (1975) Stable iterative methods for the inversion of geophysical data. Geophys J R Astron Soc 42(3):957–976. https://doi.org/10.1111/j.1365-246x.1975.tb06461.x

  • Lewerissa R, Sismanto S, Setiawan A, Pramumijoyo S (2018) The study of geological structures in Suli and Tulehu geothermal regions (Ambon, Indonesia) based on gravity gradient tensor data simulation and analytic signal. Geosciences 8:4

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1996) 3-D inversion of magnetic data. Geophysics 61:394–408

    Article  Google Scholar 

  • Linthout K, Helmers H (1994) Pliocene obducted, rotated, and migrated ultramafic rocks and obduction-induced anatectic granite, SW Seram and Ambon, Eastern Indonesia. J Southeast Asian Earth Sci 9:95–109

    Article  Google Scholar 

  • Lowrie W (2007) Fundamental of geophysics. Cambridge University Press. The Edinburgh Building, Cambridge CB2 8RU, UK

  • Macleod NI, Ellis GR (2013) Magnetic vector inversion, a simple approach to the challenge of the varying direction of rock magnetization. ASEG-PESA. Australia

  • Marini L, Susangkyono AE (1999) Fluid geochemistry of Ambon Island (Indonesia). Geothermics 28:184–204

    Article  Google Scholar 

  • Moghaddam MM, Mirzaei S, Nouraliee J, dan Porkhial S (2016) Integrated magnetic and gravity surveys for geothermal exploration in Central Iran. Arab J Geosci 9(7):1–12

    Google Scholar 

  • Mortensen KA, Axelsson G (2013) Developing a conceptual model of a geothermal Sistem. Short Course on Conceptual Modeling of Geothermal systems, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador

  • Nasution A, Aviff M, Nugroho S, Yunis Y, Honda M (2015) The preliminary conceptual model of Tolehu geothermal resource, based on geology, water geochemistry, MT, and Drilling. Proceedings World Geothermal Congress. Melbourne, Australia

  • Nouraliee J, Porkhial S, Mohammadzadeh-Moghaddam M, Mirzaei S, Ebrahimi D, Rahmani MR (2015) Investigation of density contrasts and geologic structures of hot springs in the Markazi Province of Iran using the gravity method. Russ Geol Geophys 56:1791–1800

    Article  Google Scholar 

  • Peng C, Pan B, Xue L, Liu H (2019) Geophysical survey of geothermal energy potential in the Liaoji Belt, northeastern China. Geotherm Energy 7:14. https://doi.org/10.1186/s40517-019-0130-y

    Article  Google Scholar 

  • Pirttijarvi M (2012) BLOXER. Interactive visualization and editing software for 3D block models, Version 1.5, User’s guide, Geophysical Survey of Finland

  • Pirttijarvi M (2014) GRABLOX 2.1. Gravity interpretation and modeling using 3D block models User’s guide to version 2.1. Department of Physics Sciences. The University of Oulu. Finlandia

  • Reid BA, Thurston BJ (2014) The structural index in gravity and magnetic interpretation; errors, uses, and abuses. Geophysics 79(4):J61–J66

    Article  Google Scholar 

  • Reid AB, Allsop JM, Granser H, Millett AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55(1):80–91

    Article  Google Scholar 

  • Saibi H, Nishijima J, Aboud E, Ehara S (2006) Euler deconvolution of gravity data in geothermal reconnaissance; the Obama geothermal area, Japan. J Explor Geophys Jpn (Butsuri-Tansa) 59(3):275–282

    Google Scholar 

  • Saibi H, Mogren S, Mukhopadhyay M, Ibrahim E (2018) Subsurface imaging of the Harrat Lunayyir 2007–2009 earthquake swarm zone, western Saudi Arabia, using potential field methods. J Asian Earth Sci 169:79–92. https://doi.org/10.1016/j.jseaes.2018.07.024

    Article  Google Scholar 

  • Shimada K, Yoshikazu S, Hideo A, Noriaki U, Koichiro F, Mitsuru H, Hiroshi N, Shatei I, Yoshimi F, Kenji S, Kenji F (2011) Final report of “Beta” Geothermal Field, JICA Preparatory Survey for “Beta” Geothermal Field, Unpublished. https://openjicareport.jica.go.jp/pdf/12039947.pdf. Accessed 5 July 2020

  • Sircar A, Shah M, Sahajpal S, Vaidya D, Dhale S, Chaudhary A (2015) Geothermal exploration in Gujarat: case study from Dholera. Geotherm Energy 3:22. https://doi.org/10.1186/s40517-015-0041-5

    Article  Google Scholar 

  • Thompson DT (1982) EULDPH: A new technique for making computer‐assisted depth estimates from magnetic data. Geophysics 47(1):31–37

  • Tjokrosapoetro S, Rusmana E, Suharsono D (1993) Geologi Lembar Ambon, Maluku, skala 1 : 250.000. Pusat Penelitian dan Pengembangan Geologi. Departemen Pertambangan dan Energi. Indonesia

  • Uwiduhaye JD, Mizunaga H, Saibi HA (2018) Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda. J Afr Earth Sci 139:184–192

    Article  Google Scholar 

  • Uwiduhaye JD, Mizunaga H, Saibi HA (2019) Case history: 3-D gravity modeling using hexahedral element in Kinigi geothermal field, Rwanda. Arab J Geosci 12:86

    Article  Google Scholar 

  • Van Bemmelen RW (1949) The geology of Indonesia, Vol. 1A. Government Printing Office, The Hague, 732 pp

  • Vandani, KPC, Sari AWI, Mulyaningsih E, Utami P, Yunis Y (2014) Studi alterasi hidrotermal bawah permukaan di lapangan panas bumi "BETA", Ambon dengan metode Petrografi. Prosiding seminar nasional kebumian ke-7. Jurusan Teknik Geologi. Fakultas Teknik. UGM. Yogyakarta

Download references

Acknowledgments

The authors are grateful to the Ministry of Research and Technology, the Republic of Indonesia, for the opportunity for the first author to take a doctoral program in physics, at Universitas Gadjah Mada, Yogyakarta, in 2014. The authors also thank the government of Maluku province and PT PLN of Maluku and North Maluku regions, which have permitted this research in the Suli and Tulehu geothermal fields. Also thanks to Mr. Markku Pirttijarvi for developing the GRABLOX gravity software for inversion modeling, and Geosoft Inc., which prompted the invitation of authors to use Oasis Montaj software for magnetic inversion modeling for 1 month.

Funding

Data collection refinement and article writing were funded by the Ministry of Research and Technology, the Republic of Indonesia, through a dissertation research grant (1444/E3/LT/2017) with a contract (089/SP2H/LT/DRPM/2017).

Author information

Authors and Affiliations

Authors

Contributions

R.L. and S.S. formulated ideas and designs for gravity and magnetic data collection. A.S. reviewed its theory and modeling processing. S.P. evaluated the geology in Indonesia, as well as the geology of Suli and Tulehu in Ambon, while R.L. and L.L. collected a gravity and magnetic data; then, R.L. and S.S. compiled an article that was based on the input from A.S. and S.P.

Corresponding author

Correspondence to Sismanto Sismanto.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: François Roure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewerissa, R., Sismanto, S., Setiawan, A. et al. Integration of gravity and magnetic inversion for geothermal system evaluation in Suli and Tulehu, Ambon, eastern Indonesia. Arab J Geosci 13, 726 (2020). https://doi.org/10.1007/s12517-020-05735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05735-7

Keywords

Navigation