Skip to main content

Advertisement

Log in

Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia)

  • Review Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Flooding is considered as the most dangerous natural catastrophe in the world. This paper develops a spatial multi-criteria decision production prototype for the evaluation of flooding susceptibility for the city of Tunis. Eight criterions were considered in order to identify and assess the spatial distribution of hazardous zones and were integrated in the Geographical Information System (ArcGIS). The analytical hierarchy process (AHP) is a mathematical technique for flood hazard modeling and decision support based on the weight and rank of each flood factor in order to calculate Flood Hazard Index (FHI) to generate a flood susceptibility map. This was classified from very low to very high classes flood potential. Five classes are observed: 2.85% (very low), 7.5% (low), 17.95% (moderate), 20.63% (high), and 51.06% (very high). FHI was coupled with a sensitivity analysis to derive the Flood Hazard Index with sensitivity (FHIS). This index evaluates the effect of each criteria which allows for better assessment of the role of each parameter in flood susceptibility. The results of this study provide a basis to limit the impacts of flood and protect urban zone against inundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Adamat R, Foster I, Baban S (2003) Groundwater vulnerability and risk mapping for the basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23:303–324

    Google Scholar 

  • Althuwaynee OF, Pradhan B, Park HJ, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 114:21–36

    Google Scholar 

  • Akbari GH, Rahimi Shahrbabaki M (2011) Sensitivity analysis of water at higher risk subjected to soil contaminations. Comp Meth Civil Eng 2(1):73–90

    Google Scholar 

  • Arrighi C, Brugioni M, Castelli F, Franceschini S, Mazzanti B (2018) Flood risk assessment in art cities: the exemplary case of Florence (Italy). J Flood Risk Manage 11:S616–S631

    Google Scholar 

  • Ben ayed N, Bismuth H, Viguier N (1979) Présence de l’Oligocène dans les banlieues nord et sud-est de Tunis, Notes du Service Géologique de Tunis. Tunisie, n°45:55–70

  • Benson D, Lorenzoni I, Cook H (2016) Evaluating social learning in England flood risk management: an ‘individual-community interaction’perspective. Environ Sci Pol 1(55):326–334

    Google Scholar 

  • Boutib L (1998) Tectonique de la région du grand Tunis: Évolution géométrique et cinématique des blocs structuraux du Mésozoïque à l’actuel, Thèse de doctorat, Univ. Tunis, fac. Sci. Tunis, 151 p

  • Bujakka P, Rakus M, Vacek J (1971) Directorate of Mines and Energy. (Carte géologique de la Goulette à 1/50 000, feuille n° 21, Ministère de l’Economie Nationale. Direction des mines et de l’énergie)

  • Brivio PA, Colombo R, Maggi M, Tomasoni R (2010) Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int J Remote Sens 23(3):429–441

    Google Scholar 

  • Chabbi M, Abid H (2008) La mobilité urbaine dans le Grand Tunis, Évolutions et perspectives, rapport de projet, 94 p)

    Google Scholar 

  • Chen Y, Liu R, Barrett D, Gao L, Zhou M, Renzullo L, Emlyanova I (2015) A spatial assessment framework for evaluating flood risk under extreme climates. Sci Total Environ 538:512–523

    Google Scholar 

  • CRDA (2015) Commissariat Régionale au Développement Agricole du Gouvernorat de Tunis, Ariana, Ben arous et Manouba: Annuaires pluviométriques (1985–2015)

  • De Roo APJ (1999) LISFLOOD: a rainfall-runoff model for large river basins to assess the influence of land use changes on flood risk. In: Balabanis, P. et al. (Eds.), Ribamod: river basin modelling, management and flood mitigation. Concerted action, European Commission, EUR 18287 EN, pp. 349–357

  • DGRE (2015) Direction Générale des Ressources en Eau: Annuaires pluviométriques (1985–2015)

  • DHU (2015) Drection de l’Hydraulique Urbaine, 2015. Etude de protection contre les inondations du Grand Tunis. Tunisie, 463p

  • Drobne S, Lisec A (2009) Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging. Informatica 33(4):459–474

    Google Scholar 

  • Emberger L (1955) A biographical classification of climates. Rec Trav Lab Geol Bot Zool Fac Sci Montpellier 7:1–47

    Google Scholar 

  • Elkhrachy I (2015) Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). National Authority for Remote Sensing and Space SciencesThe Egyptian Journal of Remote Sensing and Space Sciences 18(2):261–278

    Google Scholar 

  • Farah EA, Abdulatif OM, Kheir OM, Baraz N (1997) Groundwater resources in a semi-arid area: a case study from central Sudan. J Afr Earth Sci 25(3):453–466

    Google Scholar 

  • Forte F, Strobl R, Pennata L (2006) A methodology using GIS, aerial photos and remote sensing for loss estimation and flood vulnerability analysis in the Supersano-Ruffano-Nociglia Graben, southern Italy. Environ Geol 50(4):581–594

    Google Scholar 

  • Fritch TG, McKnight CL, Yelderman JR, Arnold JG (2000) An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ Manag 25(3):337–345

    Google Scholar 

  • Generino P, Sony E, Proceso LF (2014) Analytic hierarchy process (AHP) in spatial modeling for floodplain risk assessment. Int J Mach Learn Comput 4(5):450

    Google Scholar 

  • Ghanbarpour MR, Salimi S, Hipel KW (2013) A comparative evaluation of flood mitigation alternatives using GIS-based river hydraulics modelling and multicriteria decision analysis. J Flood Risk Manag 6(4):319–331

    Google Scholar 

  • Givisiez GHN, Oliveira EL (2009) Household size and demographic dividend in Brazilian housing market. IUSSP International Population Conference, p 2009

  • Gundogdu KS, Guney I (2007) Spatial analyses of groundwater levels using universal kriging. J Earth Syst Sci 116(1):49–55 http://www.ias.ac.in/article/fulltext/jess/116/01/0049-0055

    Google Scholar 

  • Green CH, Parker DJ, Tunstall SM (2000) Assessment of flood control and management options. Thematic review IV.4 prepared as an input to the world commission on dams, Cape Town, http://www.dams.org

  • Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review ofadvances in flash flood forecasting. Hydrol Process 25:2771–2784. https://doi.org/10.1002/hyp.8040

    Article  Google Scholar 

  • Hanratty PJ, Joseph B (1992) Decision-making in chemical engineering and expert systems: application of the analytic hierarchy process to reactor selection. Comput Chem Eng 1 16(9):849–860

    Google Scholar 

  • INS (2015) Recensement Général de la Population et de l'Habitat. Rebublique Tunisienne, 56p

  • INM (2015) Institut National de la Météorologie, Tableaux climatiques mensuels. Archive INM pour la période de 1985–2015.Tunis

  • Kaliraj S, Chandrasekar N, Magesh N (2014) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci 7(4):1385–1401

    Google Scholar 

  • Kazakis N, Kougias I, Patsialis T (2015) Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope–Evros region, Greece. Sci Total Environ 538:555–563 http://www.sciencedirect.com/science/article/pii/S0048969715305581

    Google Scholar 

  • Kourgialas NN, Karatzas G (2011) Flood management and a GIS modelling method to assess flood-hazard areas— a case study. Hydrological Sciences Journal–Journal des Sciences Hydrologiques 56(2):212–225

    Google Scholar 

  • Lajmi T (1968) Contribution à l’étude géologique et hydrogéologique de la plaine du Mornag (Tunisie). Notes Serv Geol Tunisia, No. 27, 51 p., 13 Fig, 14 pl.

  • Liu YB, Gebremeskel S, De Smedt F, Hoffmann L, Pfister L (2003) A diffusive transport approach for flow routing in GIS-based flood modeling. J Hydrol 283(1–4):91–106

    Google Scholar 

  • Matori AN, Lawal DU, Yusof KW, Hashim MA, Balogun A (2014) Spatial analytic hierarchy process model for flood forecasting: an integrated approach. Environ Earth Sci 20(1):012029

    Google Scholar 

  • Maamri R, Ben Salem H (2000) Carte géologique de la Marsa 1/50 000, Edit. Serv Geol. From Tunisia

  • Meyer V, Becker N, Markantonis V, Schwarze R, Bergh J, Bouwer L, Bubeck P, Ciavola P, Genovese E, Green C, Hallegatte S, Kreibich H, Lequeux Q, Logar I, Papyrakis E, Pfurtscheller C, Poussin J, Przyluski V, Thieken A (2013) Assessing the costs of natural hazards—state of the art and knowledge gaps. Nat Hazards Earth Syst Sci 13(5):1351–1373

    Google Scholar 

  • Magesh NS, Chandrasekar N, Soundranayagam JP (2012) Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci Front 3(2):189–196

    Google Scholar 

  • Murthy KSR (2000) Ground water potential in a semi-arid region of Andhra Pradesh-a geographical information system approach. Int J Remote Sens 21(9):1867–1884

    Google Scholar 

  • Naik PK, Tamble JA, Dehury BN, Tiwari AN (2008) Impact of urbanization on the groundwater regime in a fast growing city in Central India. Environ Monit Assess 146(1–3):339–373

    Google Scholar 

  • Nuissl H, Haase D, Lanzendorf M, Wittmer H (2009) Environmental impact assessment of urban land use transitions—a context-sensitive approach. Land Use Policy 26(2):414–424

    Google Scholar 

  • Oikonomidis D, Dimogianni S, Kazakis N, Voudouris K (2015) A GIS/remote sensing based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology 525: 197–208

    Google Scholar 

  • Ortiz R, Ortiz P, Martín JM, Vázquez MA (2016) A new approach to the assessment of flooding and dampness hazards in cultural heritage, applied to the historic centre of Seville (Spain). Sci Total Environ 1(551):546–555

    Google Scholar 

  • Oueslati A (1994) Les côtes de la Tunisie. Recherche sur leur évolution au Quaternaire. Imprimerie officielle de la République tunisienne, Tunis, 102p

  • Ogden FL, Raj Pradhan N, Downer CW, Zahner JA (2011) Relative importance of impervious area, drainage density, width function, and subsurface storm drainage on flood runoff from an urbanized catchment. Water Resour Res 47(12)

  • OTC (1980) Carte géologique de l’ariana à 1/50 000. Topography and Cartography Office

  • Pini S, Kchouk F (1971) Carte géologique de la Tunisie à 1/50 000, feuille d’Ariana, n°13)

  • Pini S (1971) Notice explicative de la carte géologique de Tunisie à 1/50 000, feuille d’Ariana, n°13, 62 p

  • Pourghasemi HR, Biswajeet P, Candan G (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Google Scholar 

  • Poussin JK, Botzen WW, Aerts JC (2014) Factors of influence on flood damage mitigation behavior by households. Environ Sci Pol 40:69–77

    Google Scholar 

  • Pirdashti M, Ghadi A, Mohammadi M, Shojatalab G (2009) Multi-criteria decision-making selection model with application to chemical engineering management decisions. World Academy of Science. Eng Technol 49:54–59

    Google Scholar 

  • Qiong L, Jianzhong Z, Donghan L, Xingwen J (2012) Research on flood risk analysis and evaluation method based on variable fuzzy sets and information diffusion. Saf Sci 50(5):1275–1283

    Google Scholar 

  • Rahmati O, Haghizadeh A, Stefanidis S (2016a) Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization; Gorganrood River Basin, Iran. Water resources management. Feb 1;30(3):1131–50

  • Rahmati O, Zeinivand H, Besharat M (2016b) Flood hazard zoning in yasooj region, Iran, using gis and multi-criteria decision analysis. Geomat Nat Haz Risk 73(3):1000_1017

    Google Scholar 

  • Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf 8(4):867–883

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw, New York, p 281

    Google Scholar 

  • Senanayake D, Dissanayake B, Mayadunna W (2016) An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci J 7(1):115–124

    Google Scholar 

  • Shaban A, Khawlie M, Kheir RB, Abdallah C (2001) Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon–eastern Mediterranean. Bull Eng Geol Environ. 1;60(2):93–101

  • Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeol J 14(4):433–443

    Google Scholar 

  • Shankman D, Keim BD (2016) Flood risk forecast for China’s Poyang Lake region. Phys Geogr. 2;37(1):88–91

    Google Scholar 

  • Svoboda A (1991) Changes in flood regime by use of the modified curve number method. Hydrol Sci J 36(5):461–470

    Google Scholar 

  • Stefanidis S, Stathis D (2012) Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Nat Hazards 68(2):569–585

    Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2014) Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol 512:332–343

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance (No. 551.57 T515i). Drexel Institute of Technology, Centerton, NJ (EUA). Laboratory of Climatology

  • Tucci CEM, Porto RLL, Barros MTD (1995) Inundações urbanas. Porto RL, Barros M.T (eds) Drenagem urbana. Universidade do Rio Grande do Sul. Porto Agere: ABRH/UFRGS. 429p

  • Troch PA, De Troch FP, Brutsaert W (1993) Effective water table depth to describe initial conditions prior to storm rainfall in humid regions. Water Resour Res 29(2):427–434

    Google Scholar 

  • Upton KA, Jackson CR (2011) Simulation of the spatio-temporal extent of groundwater flooding using statistical methods of hydrograph classification and lumped parameter models. Hydrol Process 25(12):1949–1963

    Google Scholar 

  • Ushiyama T, Kwak Y, Ledvinka O, Iwami Y, Danhelka J (2017) Interdisciplinary approach for assessment of continental river flood risk: a case study of the Czech Republic. In EGU General Assembly Conference Abstracts 19:5737

    Google Scholar 

  • Van der Sande CJ, De Jong SM, De Roo AP (2003) A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int J Appl Earth Obs Geoinf. 1;4(3):217–229

  • Weng Q (2001) Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ Manag 28(6):737–748

    Google Scholar 

  • Wang Y, Li Z, Tang Z, Zeng G (2011) A GIS-based spatial multi-criteria approach for flood risk assessment in the Dongting Lake Region, Hunan, Central China. Water Resour Manag 25(13):3465–3484

    Google Scholar 

  • Yang M, Qian X, Zhang Y, Sheng J, Shen D, Ge Y (2011) Spatial multicriteria decision analysis of flood risks in Aging-Dam Management in China: a framework and case study. Int J Environ Res Publ 8(5):1368–1387

    Google Scholar 

  • Yaralıoğlu K (2004) Analitik Hiyerarşi Proses. Uygulamada Karar Destek Yöntemleri. İlkem Ofset, İzmir

    Google Scholar 

  • Youssef A, Pradhan B, Hassan A (2011) Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci 62(3):611–623

    Google Scholar 

  • Yahaya S (2008) Multi criteria analysis for flood vulnerable areas in Hadejia-Jama’Area river basin, Nigeria ASPRS Annual conference Portland

  • Zghibi A, Merzougui A, Chenini I, Ergaieg K, Zouhri L, Tarhouni J (2016) Groundwater vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC Index Method in GIS environment. Groundw Sustain Dev 2:169–181

    Google Scholar 

Download references

Acknowledgments

The research was supported by Tunisian ministry of higher education and Tunis El Manar University with the collaboration of the UniLaSalle-Beauvais Polytechnic Institute (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Hammami.

Additional information

Responsible Editor: Pradeep Naik

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammami, S., Zouhri, L., Souissi, D. et al. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci 12, 653 (2019). https://doi.org/10.1007/s12517-019-4754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4754-9

Keywords

Navigation